Kinase Domain (kinase + domain)

Distribution by Scientific Domains
Distribution within Chemistry


Selected Abstracts


Myosin diversity in the diatom Phaeodactylum tricornutum,

CYTOSKELETON, Issue 3 2010
Matthew B. Heintzelman
Abstract This report describes the domain architecture of ten myosins cloned from the pennate diatom Phaeodactylum tricornutum. Several of the P. tricornutum myosins show similarity to myosins from the centric diatom Thalassiosira pseudonana as well as to one myosin from the oomycete Phytophthora ramorum. The P. tricornutum myosins, ranging in size from 126 kDa to over 250 kDa, all possess the canonical head, neck and tail domains common to most myosins, though variations in each of these domains is evident. Among the features distinguishing several of the diatom myosin head domains are N-terminal SH3-like domains, variations in or near the P-loop and Loop 1 regions close to the nucleotide binding pocket, and extended converter domains. Variations in the length of the neck domain or lever arm, defined by the light chain-binding IQ motifs, are apparent with the different diatom myosins predicted to contain from one to nine IQ motifs. Protein domains found within the P. tricornutum myosin tails include regions of coiled-coil structure, ankyrin repeats, CBS domain pairs, a PB1 domain, a kinase domain and a FYVE-finger motif. As many of these features have never before been characterized in myosins of any type, it is likely that these new diatom myosins will expand the repertoire of known myosin behaviors. © 2010 Wiley-Liss, Inc. [source]


A FAK/Src chimera with gain-of-function properties promotes formation of large peripheral adhesions associated with dynamic actin assembly

CYTOSKELETON, Issue 1 2008
Priscila M. F. Siesser
Abstract Formation of a complex between the tyrosine kinases FAK and Src is a key integrin-mediated signaling event implicated in cell motility, survival, and proliferation. Past studies indicate that FAK functions in the complex primarily as a "scaffold," acting to recruit and activate Src within cell/matrix adhesions. To study the cellular impact of FAK-associated Src signaling we developed a novel gain-of-function approach that involves expressing a chimeric protein with the FAK kinase domain replaced by the Src kinase domain. This FAK/Src chimera is subject to adhesion-dependent activation and promotes tyrosine phosphorylation of p130Cas and paxillin to higher steady-state levels than is achieved by wild-type FAK. When expressed in FAK ,/, mouse embryo fibroblasts, the FAK/Src chimera resulted in a striking cellular phenotype characterized by unusual large peripheral adhesions, enhanced adhesive strength, and greatly reduced motility. Live cell imaging of the chimera-expressing FAK ,/, cells provided evidence that the large peripheral adhesions are associated with a dynamic actin assembly process that is sensitive to a Src-selective inhibitor. These findings suggest that FAK-associated Src kinase activity has the capacity to promote adhesion integrity and actin assembly. Cell Motil. Cytoskeleton 2008. © 2007 Wiley-Liss, Inc. [source]


Novel agents to override imatinib resistance mechanisms

DRUG DEVELOPMENT RESEARCH, Issue 7 2008
Asumi Yokota
Abstract Chronic myelogenous leukemia (CML) is a disorder of hematopoietic stem cells that results from the Philadelphia chromosome (Ph) created through translocation of human chromosomes 9 and 22. The resulting Bcr-Abl fusion protein has constitutively high tyrosine kinase activity that causes transformation of hematopoietic stem cells. Imatinib mesylate (IM) was developed as a specific Bcr-Abl kinase inhibitor and is efficacious in treating Ph-chromosome-positive (Ph+) leukemias such as CML and Ph+ acute lymphoblastic leukemia (ALL). Within a few years of its introduction to the clinic, IM has dramatically altered the first-line therapy for CML. Although most newly diagnosed CML patients in the chronic phase (CP) achieved durable responses when treated with IM, resistance to IM has become a major problem in patients with advanced-stage disease. The most important mechanism of IM resistance are point mutations within the Abl kinase domain; therefore, there is an urgent need for novel agents that can inhibit mutated Bcr-Abl. In this review, we describe novel Bcr-Abl tyrosine kinase inhibitors, the so-called "Super Gleevec" inhibitors. Drug Dev Res 69:398,406, 2008. © 2008 Wiley-Liss, Inc. [source]


Association of epidermal growth factor receptor mutations in lung cancer with chemosensitivity to gefitinib in isolated cancer cells from Japanese patients

EUROPEAN JOURNAL OF CANCER CARE, Issue 3 2007
K. NAKATANI md, assistant professor
Somatic mutations in the tyrosine kinase domain of the epidermal growth factor receptor (EGFR) gene are reported to be associated with clinical responsiveness of lung cancer to gefitinib, an EGFR tyrosine kinase inhibitor. To elucidate the association between somatic mutations and the pharmacological actions of gefitinib, the chemosensitivity of isolated cancer cells from the lungs of Japanese patients to gefitinib was examined by the collagen gel-droplet embedded culture drug sensitivity test in vitro. In 30 specimens isolated from non-small-cell lung cancer patients, mutations were observed in eight tumour specimens (27%) and chemosensitivity to gefitinib was observed in seven specimens (23%). However, somatic mutations were not predominantly associated with chemosensitivity to gefitinib in vitro. Both mutation and chemosensitivity frequencies in this study were higher than those reported in studies from the United States, indicating a possible ethnic difference. Moreover, both frequencies were much higher in females than in males. Since a gender difference in chemosensitivity to gefitinib was observed in isolated cancer cells in vitro, this suggests that gefitinib works in part through the suppression of EGFR signalling, but that other factors, including sex-related factors, may participate in gefitinib action. [source]


Chemokines integrate JAK/STAT and G-protein pathways during chemotaxis and calcium flux responses

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 5 2003
Silvia
Abstract The JAK/STAT (Janus kinase / signaling transducer and activator of transcription) signaling pathway is implicated in converting stationary epithelial cells to migratory cells. In mammals, migratory responses are activated by chemoattractant proteins, including chemokines. We found that by binding to seven-transmembrane G-protein-coupled receptors, chemokines activate the JAK/STAT pathwayto trigger chemotactic responses. We show that chemokine-mediated JAK/STAT activation is critical for G-protein induction and for phospholipase C-, dependent Ca2+ flux; in addition, pharmacological inhibition of JAK or mutation of the JAK kinase domain causes defects in both responses. Furthermore, G,i association with the receptor is dependent on JAK activation, andthe chemokine-mediated Ca2+ flux that requires phospholipase C-, activity takes place downstream of JAK kinases. The chemokines thus employ a mechanism that links heterologous signaling pathways , G proteins and tyrosine kinases , in a network that may be essential for mediating their pleiotropic responses. [source]


Epidermal growth factor receptor in relation to tumor development: EGFR-targeted anticancer therapy

FEBS JOURNAL, Issue 2 2010
Isamu Okamoto
The discovery that signaling by the epidermal growth factor receptor (EGFR) plays a key role in tumorigenesis prompted efforts to target this receptor in anticancer therapy. Two different types of EGFR-targeted therapeutic agents were subsequently developed: mAbs, such as cetuximab and panitumumab, which target the extracellular domain of the receptor, thereby inhibiting ligand-dependent EGFR signal transduction; and small-molecule tyrosine kinase inhibitors, such as gefitinib and erlotinib, which target the intracellular tyrosine kinase domain of the EGFR. Furthermore, recent clinical and laboratory studies have identified molecular markers that have the potential to improve the clinical effectiveness of EGFR-targeted therapies. This minireview summarizes the emerging role of molecular profiling in guiding the clinical use of anti-EGFR therapeutic agents. [source]


Death-associated protein kinase (DAPK) and signal transduction: additional roles beyond cell death

FEBS JOURNAL, Issue 1 2010
Yao Lin
Death-associated protein kinase (DAPK) is a stress-regulated protein kinase that mediates a range of processes, including signal-induced cell death and autophagy. Although the kinase domain of DAPK has a range of substrates that mediate its signalling, the additional protein interaction domains of DAPK are relatively ill defined. This review will summarize our current knowledge of the DAPK interactome, the use of peptide aptamers to define novel protein,protein interaction motifs, and how these new protein,protein interactions give insight into DAPK functions in diverse cellular processes, including growth factor signalling, the regulation of autophagy, and its emerging role in the regulation of immune responses. [source]


Autophosphorylation of Archaeoglobus fulgidus Rio2 and crystal structures of its nucleotide,metal ion complexes

FEBS JOURNAL, Issue 11 2005
Nicole LaRonde-LeBlanc
The highly conserved, atypical RIO serine protein kinases are found in all organisms, from archaea to man. In yeast, the kinase activity of Rio2 is necessary for the final processing step of maturing the 18S ribosomal rRNA. We have previously shown that the Rio2 protein from Archaeoglobus fulgidus contains both a small kinase domain and an N-terminal winged helix domain. Previously solved structures using crystals soaked in nucleotides and Mg2+ or Mn2+ showed bound nucleotide but no ordered metal ions, leading us to the conclusion that they did not represent an active conformation of the enzyme. To determine the functional form of Rio2, we crystallized it after incubation with ATP or ADP and Mn2+. Co-crystal structures of Rio2,ATP,Mn and Rio2,ADP,Mn were solved at 1.84 and 1.75 Å resolution, respectively. The ,-phosphate of ATP is firmly positioned in a manner clearly distinct from its location in canonical serine kinases. Comparison of the Rio2,ATP,Mn complex with the Rio2 structure with no added nucleotides and with the ADP complex indicates that a flexible portion of the Rio2 molecule becomes ordered through direct interaction between His126 and the ,-phosphate oxygen of ATP. Phosphopeptide mapping of the autophosphorylation site of Rio2 identified Ser128, within the flexible loop and directly adjacent to the part that becomes ordered in response to ATP, as the target. These results give us further information about the nature of the active site of Rio2 kinase and suggest a mechanism of regulation of its enzymatic activity. [source]


Cloning of the guanylate kinase homologues AGK-1 and AGK-2 from Arabidopsis thaliana and characterization of AGK-1

FEBS JOURNAL, Issue 2 2000
Vinod Kumar
Guanylate kinase is an essential enzyme for nucleotide metabolism, phosphorylating GMP to GDP or dGMP to dGDP. The low molecular mass cytosolic forms of guanylate kinase are implicated primarily in the regulation of the supply of guanine nucleotides to cell signalling pathways. The high molecular mass and membrane-associated forms of guanylate kinase homologues, notably found in neuronal tissues, are assigned roles in cell junction organization and transmembrane regulation. Here, we describe the first plant guanylate kinase-encoding genes, AGK1 and AGK2, from Arabidopsis thaliana. The nucleotide sequences of their genomic and cDNA clones predict proteins that carry N-terminal and C-terminal extensions of the guanylate kinase-like domain. The amino acid sequences of this domain share 46,52% identity with guanylate kinases from yeast, Escherichia coli, human, mouse and Caenorhabditis elegans. Arabidopsis guanylate kinases (AGKs) exhibit a high degree of conservation of active site residues and sequence motifs in common with other nucleoside monophosphate kinases, which suggests overall structural similarity of the plant proteins. Although bacterially expressed AGK-1 is enzymatically much less active than yeast guanylate kinase, its kinase domain is shown to complement yeast GUK1 recessive lethal mutations. AGKs are expressed ubiquitously in plant tissues with highest transcriptional activity detected in roots. The identification of AGKs provides new perspectives for understanding the role of guanylate kinases in plant cell signalling pathways. [source]


Schizosaccharomyces pombe cell division cycle under limited glucose requires Ssp1 kinase, the putative CaMKK, and Sds23, a PP2A-related phosphatase inhibitor

GENES TO CELLS, Issue 5 2009
Yuichiro Hanyu
Calcium/calmodulin-dependent protein kinase (CaMK) is required for diverse cellular functions, and similar kinases exist in fungi. Although mammalian CaMK kinase (CaMKK) activates CaMK and also evolutionarily-conserved AMP-activated protein kinase (AMPK), CaMKK is yet to be established in yeast. We here report that the fission yeast Schizosaccharomyces pombe Ssp1 kinase, which controls G2/M transition and response to stress, is the putative CaMKK. Ssp1 has a CaM binding domain (CBD) and associates with 14-3-3 proteins as mammalian CaMKK does. Temperature-sensitive ssp1 mutants isolated are defective in the tolerance to limited glucose, and this tolerance requires the conserved stretch present between the kinase domain and CBD. Sds23, multi-copy suppressor for mutants defective in type 1 phosphatase and APC/cyclosome, also suppresses the ssp1 phenotype, and is required for the tolerance to limited glucose. We demonstrate that Sds23 binds to type 2A protein phosphatases (PP2A) and PP2A-related phosphatase Ppe1, and that Sds23 inhibits Ppe1 phosphatase activity. Ssp1 and Ppe1 thus seem to antagonize in utilizing limited glucose. We also show that Ppk9 and Ssp2 are the catalytic subunits of AMPK and AMPK-related kinases, respectively, which bind to common ,-(Amk2) and ,-(Cbs2) subunits. [source]


The t(1;9)(p34;q34) and t(8;12)(p11;q15) fuse pre-mRNA processing proteins SFPQ (PSF) and CPSF6 to ABL and FGFR1

GENES, CHROMOSOMES AND CANCER, Issue 5 2008
Claire Hidalgo-Curtis
We have investigated two patients with acquired chromosomal rearrangements, a male presenting with a t(1;9)(p34;q34) and B cell progenitor acute lymphoid leukemia and a female presenting with a t(8;12)(p11;q15) and the 8p11 myeloproliferative syndrome. We determined that the t(1;9) fused ABL to SFPQ (also known as PSF), a gene mapping to 1p34 that encodes a polypyrimidine tract-binding protein-associated splicing factor. The t(8;12) fused CPSF6, a cleavage and polyadenylation specificity factor, to FGFR1. The fusions were confirmed by amplification of the genomic breakpoints and RT-PCR. The predicted oncogenic products of these fusions, SFPQ-ABL and CPSF6-FGFR1, are in-frame and encode the N-terminal domain of the partner protein and the entire tyrosine kinase domain and C-terminal sequences of ABL and FGFR1. SFPQ interacts with two FGFR1 fusion partners, ZNF198 and CPSF6, that are functionally related to the recurrent PDGFR, partner FIP1L1. Our findings thus identify a group of proteins that are important for pre-mRNA processing as fusion partners for tyrosine kinases in hematological malignancies. © 2008 Wiley-Liss, Inc. [source]


A BCR,JAK2 fusion gene as the result of a t(9;22)(p24;q11.2) translocation in a patient with a clinically typical chronic myeloid leukemia

GENES, CHROMOSOMES AND CANCER, Issue 3 2005
Frank Griesinger
Chronic myeloid leukemia (CML) is characterized by the presence of a t(9;22)(q34;q11.2), which leads to the well-known BCR,ABL1 fusion protein. We describe a patient who was diagnosed clinically with a typical CML but on cytogenetic analysis was found to have a t(9;22)(p24;q11.2). Chromosomal fluorescence in situ hybridization showed that the BCR gene locus spanned the breakpoint at band 22q11.2 but that the ABL1 gene was not rearranged. By means of a candidate gene approach, the JAK2 gene, at 9p24, was identified as the fusion partner of BCR in this case. The BCR,JAK2 fusion protein contains the coiled-coil dimerization domain of BCR and the protein tyrosine kinase domain (JH1) of JAK2. The patient's disease did not respond to Imatinib, and this unresponsiveness was most likely a result of the BCR,JAK2 fusion protein. © 2005 Wiley-Liss, Inc. [source]


Clinically reported heterozygous mutations in the PINK1 kinase domain exert a gene dosage effect,

HUMAN MUTATION, Issue 11 2009
Eng-King Tan
Abstract Mutations in the gene encoding phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1) have been associated with the loss of dopaminergic neurons characteristic of familial and sporadic Parkinson disease. We developed an in vitro system of stable human dopaminergic neuronal cell lines coexpressing an equivalent copy of normal and mutant PINK1 to simulate "heterozygous" and "homozygous" states in patients. Mutants in the N-terminus, C-terminus, and kinase domain were generated and cloned into a two-gene mammalian expression vector to generate stable mammalian expression cell lines producing an equivalent copy number of wild-type/mutant PINK1. The cell lines were subjected to oxidative stress and the rate of apoptosis and change in mitochondrial membrane potential (,,m) were assessed. Cell lines expressing kinase and C-terminus mutants exhibited a greater rate of apoptosis and decrease in ,,m, and increased time-dependent cell loss when subjected to oxidative stress compared to the wild-type. Cell lines expressing two copies of kinase mutants exhibited a greater apoptosis rate and ,,m decrease than those expressing one copy of the mutant. In time-dependent experiments, there was a significant difference between "homozygous," "heterozygous," and wild-type cell lines, with decreasing cell survival in cell lines expressing mutant copies of PINK1 compared to the wild-type. We provided the first experimental evidence that clinically reported PINK1 heterozygous mutations exert a gene dosage effect, suggesting that haploinsufficiency of PINK1 is the most likely mechanism that increased the susceptibility to dopaminergic cellular loss. Hum Mutat 30:1551,1557, 2009. © 2009 Wiley-Liss, Inc. [source]


Mutations in severe combined immune deficiency (SCID) due to JAK3 deficiency

HUMAN MUTATION, Issue 4 2001
Luigi D. Notarangelo
Abstract During the last 10 years, an increasing number of genes have been identified whose abnormalities account for primary immunodeficiencies, with defects in development and/or function of the immune system. Among them is the JAK3 -gene, encoding for a tyrosine kinase that is functionally coupled to cytokine receptors which share the common gamma chain. Defects of this gene cause an autosomal recessive form of severe combined immunodeficiency with almost absent T-cells and functionally defective B-cells (T,B+ SCID). Herewith, we present molecular information on the first 27 unique mutations identified in the JAK3 gene, including clinical data on all of the 23 affected patients reported so far. A variety of mutations scattered throughout all seven functional domains of the protein, and with different functional effects, have been identified. Availability of a molecular screening test, based on amplification of genomic DNA, facilitates the diagnostic approach, and has permitted recognition that JAK3 deficiency may also be associated with atypical clinical and immunological features. Development of a structural model of the JAK3 kinase domain has allowed characterization of the functional effects of the various mutations. Most importantly, molecular analysis at the JAK3 locus results in improved genetic counseling, allows early prenatal diagnosis, and prompts appropriate treatment (currently based on hematopoietic stem cell transplantation) in affected families. Hum Mutat 18:255,263, 2001. © 2001 Wiley-Liss, Inc. [source]


Molecular analysis of the serine/threonine kinase Akt and its expression in the mosquito Aedes aegypti

INSECT MOLECULAR BIOLOGY, Issue 3 2003
M. A. Riehle
Abstract A key component of the insulin-signalling pathway, the protein kinase Akt, was identified and cloned as a cDNA from ovaries of the mosquito Aedes aegypti. An ortholog gene was found in the Anopheles gambiae genome database, and like other Akts, both mosquito Akts possess pleckstrin homology domains for membrane binding and a serine/threonine kinase domain. When Ae. aegypti ovaries were treated with bovine insulin in vitro, a putative Akt was threonine-phosphorylated, as expected for Akts. AaegAKT was only expressed in embryos for the first 6 h after oviposition and in ovaries before and during a gonotrophic cycle. [source]


Lack of oncogenic mutations in the c-Met catalytic tyrosine kinase domain in acral lentiginous melanoma

INTERNATIONAL JOURNAL OF DERMATOLOGY, Issue 12 2008
Hannes Seidl PhD
No abstract is available for this article. [source]


PDK1 and PKB/Akt: Ideal Targets for Development of New Strategies to Structure-Based Drug Design

IUBMB LIFE, Issue 3 2003
Thomas Harris
Abstract Growth factor binding events to receptor tyrosine kinases result in activation of phosphatidylinositol 3-kinase (PI3K), and activated PI3K generates the membrane-bound second messengers phosphatidylinositol 3,4-diphosphate [PI(3,4)P2] and PI(3,4,5)P3, which mediate membrane translocation of the phosphoinositide-dependent kinase-1 (PDK1) and protein kinase B (PKB, also known as Akt). In addition to the kinase domain, PDK1 and PKB contain a pleckstrin homology (PH) domain that binds to the second messenger, resulting in the phosphorylation and activation of PKB by PDK1. Recent evidence indicates that constitutive activation of PKB contributes to cancer progression by promoting proliferation and increased cell survival. The indicating of PDK1 and PKB as primary targets for discovery of anticancer drugs, together with the observations that both PDK1 and PKB contain small-molecule regulatory binding sites that may be in proximity to the kinase active site, make PDK1 and PKB ideal targets for the development of new strategies to structure-based drug design. While X-ray structures have been reported for the kinase domains of PDK1 and PKB, no suitable crystals have been obtained for either PDK1 or PKB with their PH domains intact. In this regard, a novel structure-based strategy is proposed, which utilizes segmental isotopic labeling of the PH domain in combination with site-directed spin labeling of the kinase active site. Then, long-range distance restraints between the 15N-labeled backbone amide groups of the PH domain and the unpaired electron of the active site spin label can be determined from magnetic resonance studies of the enhancement effect that the paramagnetic spin label has on the nuclear relaxation rates of the amide protons. The determination of the structure and position of the PH domain with respect to the known X-ray structure of the kinase active site could be useful in the rational design of potent and selective inhibitors of PDK1 and PKB by 'linking' the free energies of binding of substrate (ATP) analogs with analogs of the inositol polar head group of the phospholipid second messenger. The combined use of X-ray crystallography, segmental isotopic and spin labeling, and magnetic resonance studies can be further extended to the study of other dynamic multidomain proteins and targets for structure-based drug design. IUBMB Life, 55: 117-126, 2003 [source]


Shepherding AKT and androgen receptor by Ack1 tyrosine kinase

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2010
Kiran Mahajan
Ack1 (also known as ACK, TNK2, or activated Cdc42 kinase) is a structurally unique non-receptor tyrosine kinase that is expressed in diverse cell types. It integrates signals from plethora of ligand-activated receptor tyrosine kinases (RTKs), for example, MERTK, EGFR, HER2, PDGFR and insulin receptor to initiate intracellular signaling cascades. Ack1 transduces extracellular signals to cytosolic and nuclear effectors such as the protein kinase AKT/PKB and androgen receptor (AR), to promote cell survival and growth. While tyrosine phosphorylation of AR at Tyr267 regulates androgen-independent recruitment of AR to the androgen-responsive enhancers and transcription of AR target genes to drive prostate cancer progression, phosphorylation of an evolutionarily conserved Tyrosine 176 in the kinase domain of AKT is essential for mitotic progression and positively correlates with breast cancer progression. In contrast to AR and AKT, Ack1-mediated phosphorylation of the tumor suppressor Wwox at Tyr287 lead to rapid Wwox polyubiquitination followed by degradation. Thus, by its ability to promote tumor growth by negatively regulating tumor suppressor such as Wwox and positively regulating pro-survival factors such as AKT and AR, Ack1 is emerging as a critical player in cancer biology. In this review, we discuss recent advances in understanding the physiological functions of Ack1 signaling in normal cells and the consequences of its hyperactivation in various cancers. J. Cell. Physiol. 224: 327,333, 2010. © 2010 Wiley-Liss, Inc. [source]


Caenorhabditis elegans PI3K mutants reveal novel genes underlying exceptional stress resistance and lifespan

AGING CELL, Issue 6 2009
Srinivas Ayyadevara
Summary Two age-1 nonsense mutants, truncating the class-I phosphatidylinositol 3-kinase catalytic subunit (PI3KCS) before its kinase domain, confer extraordinary longevity and stress-resistance to Caenorhabditis elegans. These traits, unique to second-generation homozygotes, are blunted at the first generation and are largely reversed by additional mutations to DAF-16/FOXO, a transcription factor downstream of AGE-1 in insulin-like signaling. The strong age-1 alleles (mg44, m333) were compared with the weaker hx546 allele on expression microarrays, testing four independent cohorts of each allele. Among 276 genes with significantly differential expression, 92% showed fewer transcripts in adults carrying strong age-1 alleles rather than hx546. This proportion is significantly greater than the slight bias observed when contrasting age-1 alleles to wild-type worms. Thus, transcriptional changes peculiar to nonsense alleles primarily involve either gene silencing or failure of transcriptional activation. A subset of genes responding preferentially to age-1- nonsense alleles was reassessed by real-time polymerase chain reaction, in worms bearing strong or weak age-1 alleles; nearly all of these were significantly more responsive to the age-1(mg44) allele than to age-1(hx546). Additional mutation of daf-16 reverted the majority of altered mg44 -F2 expression levels to approximately wild-type values, although a substantial number of genes remained significantly distinct from wild-type, implying that age-1(mg44) modulates transcription through both DAF-16/FOXO-dependent and ­independent channels. When age-1 -inhibited genes were targeted by RNA interference (RNAi) in wild-type or age-1(hx546) adults, most conferred significant oxidative-stress protection. RNAi constructs targeting two of those genes were shown previously to extend life, and RNAi's targeting five novel genes were found here to increase lifespan. PI3K - null mutants may thus implicate novel mechanisms of life extension. [source]


Phototropins and Their LOV Domains: Versatile Plant Blue-Light Receptors

JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 1 2007
Winslow R. Briggs
Abstract The phototropins phot1 and phot2 are plant blue-light receptors that mediate phototropism, chloroplast movements, stomatal opening, leaf expansion, the rapid inhibition of hypocotyl growth in etiolated seedlings, and possibly solar tracking by leaves in those species in which it occurs. The phototropins are plasma membrane-associated hydrophilic proteins with two chromophore domains (designated LOV1 and LOV2 for their resemblance to domains in other signaling proteins that detect light, oxygen, or voltage) in their N-terminal half and a classic serine/threonine kinase domain in their C-terminal half. Both chromophore domains bind flavin mononucleotide (FMN) and both undergo light-activated formation of a covalent bond between a nearby cysteine and the C(4a) carbon of the FMN to form the signaling state. LOV2-cysteinyl adduct formation leads to the release downstream of a tightly bound amphipathic ,-helix, a step required for activation of the kinase function. This cysteinyl adduct then slowly decays over a matter of seconds or minutes to return the photoreceptor chromophore modules to their ground state. Functional LOV2 is required for light-activated phosphorylation and for various blue-light responses mediated by the phototropins. The function of LOV1 is still unknown, although it may serve to modulate the signal generated by LOV2. The LOV domain is an ancient chromophore module found in a wide range of otherwise unrelated proteins in fungi and prokaryotes, the latter including cyanobacteria, eubacteria, and archaea. Further general reviews on the phototropins are those by Celaya and Liscum (2005) and Christie and Briggs (2005). [source]


Cloning and Preliminary Characterization of Three Receptor-like Kinase Genes in Soybean

JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 11 2006
Yuan-Yuan Ma
Abstract Leaf senescence that occurs in the last stage of leaf development is a genetically programmed process. It is very significant to isolate the upstream components in the senescence signaling pathway and to elucidate the molecular mechanisms that control the initiation and progression of leaf senescence. In this study, full-length cDNAs of three receptor-like protein kinase genes, designated rlpk1, rlpk2 and rlpk3, were cloned from artificially-induced senescent soybean (Glycine max L.) primary leaves (GenBank accession AY687390, AY687391, AF338813). The deduced amino acid sequences indicated that they belonged to a receptor-like kinase family. Each of rlpk1 and rlpk2 encodes a leucine-rich repeat (LRR) receptor-like protein kinase. They both comprise a typical signal peptide, several LRR motifs, a single-pass transmem-brane domain, and a cytoplasmic protein kinase domain. No typical extracellular domain of RLPK3 was predicted. Organ-specific expression pattern analysis by reverse-transcription polymerase chain reaction (RT-PCR) revealed higher expression levels of the three genes in cotyledons, roots and flowers. Phylogenetic analysis indicated that RLPK1 and RLPK2 belonged to an independent branch, whereas RLPK3 shared common nodes with several known RLKs responding to abiotic and biotic stresses. The evident alternations of expression profiles of rlpk1 and rlpk2 induced by the artificial senescence-inducing treatment implied involvements of these two RLKs in regulating soybean leaf senescence. (Managing editor: Li-Hui Zhao) [source]


Biochemical aspects of the neuroprotective mechanism of PTEN-induced kinase-1 (PINK1)

JOURNAL OF NEUROCHEMISTRY, Issue 1 2008
Ryan D. Mills
Abstract Mutations in PTEN-induced kinase 1 (PINK1) gene cause PARK6 familial Parkinsonism. To decipher the role of PINK1 in pathogenesis of Parkinson's disease (PD), researchers need to identify protein substrates of PINK1 kinase activity that govern neuronal survival, and establish whether aberrant regulation and inactivation of PINK1 contribute to both familial Parkinsonism and idiopathic PD. These studies should take into account the several unique structural and functional features of PINK1. First PINK1 is a rare example of a protein kinase with a predicted mitochondrial-targeting sequence and a possible resident mitochondrial function. Second, bioinformatic analysis reveals unique insert regions within the kinase domain that are potentially involved in regulation of kinase activity, substrate selectivity and stability of PINK1. Third, the C-terminal region contains functional motifs governing kinase activity and substrate selectivity. Fourth, accumulating evidence suggests that PINK1 interacts with other signaling proteins implicated in PD pathogenesis and mitochondrial dysfunction. The most prominent examples are the E3 ubiquitin ligase Parkin, the mitochondrial protease high temperature requirement serine protease 2 and the mitochondrial chaperone tumor necrosis factor receptor-associated protein 1. How PINK1 may regulate these proteins to maintain neuronal survival is unclear. This review describes the unique structural features of PINK1 and their possible roles in governing mitochondrial import, processing, kinase activity, substrate selectivity and stability of PINK1. Based upon the findings of previous studies of PINK1 function in cell lines and animal models, we propose a model on the neuroprotective mechanism of PINK1. This model may serve as a conceptual framework for future investigation into the molecular basis of PD pathogenesis. [source]


MAPK-pathway activity, Lrrk2 G2019S, and Parkinson's disease

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 6 2007
Linda R. White
Abstract The 6055G>A mutation in the leucine-rich repeat kinase 2 (LRRK2) gene results in a G2019S substitution in the mixed-lineage kinase domain of Lrrk2, causing autosomal dominant Parkinson's disease (PD). We hypothesized the mutation alters cellular mitogen-activated protein kinase (MAPK) signalling cascades, and might be detectable in tissues other than in the brain. We therefore compared total levels and activation of the signalling proteins Src, HSP27, p38 MAPK, JNK, and ERK, in extracts of leukocytes isolated from patients with PD carrying the G2019S mutation, healthy mutation carriers, patients with idiopathic PD, and healthy controls. Phosphorylation of Src, HSP27, and JNK was reduced significantly in cell extracts from patients with G2019S-associated PD compared to healthy controls. Similarly, phosphorylation was reduced significantly in Src and HSP27 in the group of healthy carriers of the mutation, as well as in patients with idiopathic PD. Significant reductions in total Src were also observed in these three groups compared to the controls. The results of this pilot project therefore indicate significant alterations in key signalling proteins in leukocytes from patients with PD, and were most pronounced in G2019S-associated PD. Changes in MAPK-signalling may thus be common to PD pathophysiology, regardless of aetiology. Such changes may also be shown in blood samples during the preclinical stage of LRRK2 -associated PD, which could be particularly important for the development of neuroprotective strategies to delay onset, or slow progression of PD. © 2007 Wiley-Liss, Inc. [source]


Denaturing capillary electrophoresis for automated detection of L858R mutation in exon 21 of the epidermal growth factor receptor gene in prediction of the outcome of lung cancer therapy

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 15 2010
Lucie Benesova
Abstract The presence of activating mutations within the tyrosine kinase domain of the epidermal growth factor receptor gene has been attributed to a positive response to biological therapy of lung cancer by small-molecular tyrosine kinase inhibitors, gefitinib and erlotinib. Among the two most significant mutation types are deletions in exon 19 and a single point substitution in exon 21 (termed L858R). The exon 19 deletions can readily be examined by fragment analysis, due to the characteristic length difference between the normal and mutated PCR product. Analysis of the L858R point mutation, however, presents a greater challenge. The current paper is aimed at developing a sensitive, yet simple, low-cost mutation detection assay directed at the L858R mutation using a method based on CE of heteroduplexes under partial denaturing conditions. We perform optimization of separation conditions on different commercial instruments including ones equipped with 8, 16 and 96 capillaries. We present normalized migration reproducibility in the range from 1 (8 and 16) to 5% (96) RSD. A reliable distinction of the R836R silent polymorphism from a potential presence of the L858R mutation is also demonstrated. In its implementation, the presented assay is just another application running on a conventional CE platform without the need of dedicated instrumentation. [source]


A novel FIP1L1-PDGFRA mutant destabilizing the inactive conformation of the kinase domain in chronic eosinophilic leukemia/hypereosinophilic syndrome

ALLERGY, Issue 6 2009
S. Salemi
Background:, The Fip1-like-1,platelet-derived growth factor receptor alpha (FIP1L1-PDGFRA) gene fusion is a common cause of chronic eosinophilic leukemia (CEL)/hypereosinophilic syndrome (HES), and patients suffering from this particular subgroup of CEL/HES respond to low-dose imatinib therapy. However, some patients may develop imatinib resistance because of an acquired T674I mutation, which is believed to prevent drug binding through steric hindrance. Methods:, In an imatinib resistant FIP1L1-PDGFRA positive patient, we analyzed the molecular structure of the fusion gene and analyzed the effect of several kinase inhibitors on FIP1L1-PDGFRA-mediated proliferative responses in vitro. Results:, Sequencing of the FIP1L1-PDGFRA fusion gene revealed the occurrence of a S601P mutation, which is located within the nucleotide binding loop. In agreement with the clinical observations, imatinib did not inhibit the proliferation of S601P mutant FIP1L1-PDGFRA-transduced Ba/F3 cells. Moreover, sorafenib, which has been described to inhibit T674I mutant FIP1L1-PDGFRA, failed to block S601P mutant FIP1L1-PDGFRA. Structural modeling revealed that the newly identified S601P mutated form of PDGFRA destabilizes the inactive conformation of the kinase domain that is necessary to bind imatinib as well as sorafenib. Conclusions:, We identified a novel mutation in FIP1L1-PDGFRA resulting in both imatinib and sorafenib resistance. The identification of novel drug-resistant FIP1L1-PDGFRA variants may help to develop the next generation of target-directed compounds for CEL/HES and other leukemias. [source]


The polyphenol epigallocatechin-3-gallate affects lipid rafts to block activation of the c-Met receptor in prostate cancer cells

MOLECULAR CARCINOGENESIS, Issue 8 2010
Damian Duhon
Abstract The HGF/c-Met pathway is an important regulator of signaling pathways responsible for invasion and metastasis of most human cancers, including prostate cancer. Exposure of DU145 prostate tumor cells to HGF stimulates the PI3-kinase and MAPK pathways, leading to increased scattering, motility, and invasion, which was prevented by the addition of EGCG. EGCG acted at the level of preventing phosphorylation of tyrosines 1234/1235 in the kinase domain of the c-Met receptor without effecting dimerization. HGF-induced changes were independent of the formation of reactive oxygen species, suggesting that EGCG functioned independent of its antioxidant ability. ECG, another tea polyphenol, was as effective as EGCG, while EGC and EC were less effective. EGCG added up to 4,h after the addition of HGF still blocked cell scattering and reduced the HGF-induced phosphorylation of c-Met, Akt, and Erk, suggesting that EGCG could act both by preventing activation of c-Met by HGF and by attenuating the activity of pathways already induced by HGF. HGF did not activate the MAPK and PI3-K pathways in cells treated with methyl-,-cyclodextrin (mCD) to remove cholesterol. Furthermore, subcellular fractionation approaches demonstrated that only phosphorylated c-Met accumulated in Triton X-100 membrane insoluble fractions, supporting a role for lipid rafts in regulating c-Met signaling. Finally, EGCG treatment inhibited DiIC16 incorporation into membrane lipid ordered domains, and cholesterol partially inhibited the EGCG effects on signaling. Together, these results suggest that green tea polyphenols with the R1 galloyl group prevent activation of the c-Met receptor by altering the structure or function of lipid rafts. © 2010 Wiley-Liss, Inc. [source]


Tyrosine protein kinases and spermatogenesis: truncation matters

MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 4 2006
Abraham L. Kierszenbaum
Abstract Protein phosphorylation on serine/threonine or tyrosine residues represents a significant regulatory mechanism in signal transduction during spermatogenesis, oogenesis, and fertilization. There are several families of tyrosine protein kinases operating during spermatogenesis: the Src family of tyrosine protein kinases; the Fujinami poultry sarcoma/feline sarcoma (Fps/Fes) and Fes-related protein (Fer) subfamily of non-receptor proteins; and c-kit, the transmembrane tyrosine kinase receptor that belongs to the family of the PDGF receptor. A remarkable characteristic is the coexistence of full-length and truncated tyrosine kinases in testis. Most of the truncated forms are present during spermiogenesis. Examples include the truncated forms of Src tyrosine kinase hematopoietic cell kinase (Hck), FerT, and tr-kit. A feature of FerT and tr-kit is the kinase domain that ensures the functional properties of the truncated protein. FerT, a regulator of actin assembly/disassembly mediated by cortactin phosphorylation, is present in the acroplaxome, a cytoskeletal plate containing an F-actin network and linking the acrosome to the spermatid nuclear envelope. This finding suggests that Fer kinase represents one of the tyrosine protein kinases that may contribute to spermatid head shaping. The c-kit ligand, stem cell factor (SCF), which induces c-kit dimerization and autophosphorylation, exists as both membrane-associated and soluble. Although tyrosine protein kinases are prominent in spermatogenesis, a remarkable observation is the paucity of phenotypic alterations in spermatogenic cells in male mice targeted with Fer kinase-inactivating mutation. It is possible that the redundant functions of the tyrosine protein kinase pool present during spermatogenesis may explain the limited phenotypes of single mutant mice. The production of compound and viable mutant mice, lacking the expression of two or more tyrosine kinases, may shed light on this intriguing issue. Mol. Reprod. Dev. © 2006 Wiley-Liss, Inc. [source]


A novel upstream regulator of WRKY53 transcription during leaf senescence in Arabidopsis thaliana

PLANT BIOLOGY, Issue 2008
Y. Miao
Abstract Arabidopsis WRKY proteins comprise a family of zinc finger-type transcription factors involved in the regulation of gene expression during pathogen defence, wounding, trichome development and senescence. To better understand the regulatory role of the senescence-related WRKY53 factor, we identified upstream regulatory factors using the yeast one-hybrid system. Among others, we identified a DNA-binding protein with a so far unknown function that contains a transcriptional activation domain and a kinase domain with similarities to HPT kinases. In vitro studies revealed that this activation domain protein (AD protein) can phosphorylate itself and that phosphorylation increases its DNA-binding activity to the WRKY53 promoter region. Using the yeast two-hybrid system, an interaction with proteins that were previously shown to bind to the WRKY53 promoter was tested. The AD protein interacted with MEKK1. The interaction with MEKK1 was confirmed in vivo by bimolecular fluorescence complementation (BiFC); however, the AD protein was not phosphorylated by MEKK1 in vitro and vice versa. This indicates that there may be competition between WRKY53 and AD protein for binding of MEKK1 at the WRKY53 promoter. Overexpression and knockout of the respective gene resulted in changes in transcription levels of WRKY53, indicating that AD protein is a positive regulator of WRKY53 expression. Expression of the AD protein gene can be induced by hydrogen peroxide treatment and reduced by jasmonic acid treatment, as previously shown for WRKY53. [source]


The Abl SH2-kinase linker naturally adopts a conformation competent for SH3 domain binding

PROTEIN SCIENCE, Issue 4 2007
Shugui Chen
Abstract The core of the Abelson tyrosine kinase (c-Abl) is structurally similar to Src-family kinases where SH3 and SH2 domains pack against the backside of the kinase domain in the down-regulated conformation. Both kinase families depend upon intramolecular association of SH3 with the linker joining the SH2 and kinase domains for suppression of kinase activity. Hydrogen deuterium exchange (HX) and mass spectrometry (MS) were used to probe intramolecular interaction of the c-Abl SH3 domain with the linker in recombinant constructs lacking the kinase domain. Under physiological conditions, the c-Abl SH3 domain undergoes partial unfolding, which is stabilized by ligand binding, providing a unique assay for SH3:linker interaction in solution. Using this approach, we observed dynamic association of the SH3 domain with the linker in the absence of the kinase domain. Truncation of the linker before W254 completely prevented cis -interaction with SH3, while constructs containing amino acids past this point showed SH3:linker interactions. The observation that the Abl linker sequence exhibits SH3-binding activity in the absence of the kinase domain is unique to Abl and was not observed with Src-family kinases. These results suggest that SH3:linker interactions may have a more prominent role in Abl regulation than in Src kinases, where the down-regulated conformation is further stabilized by a second intramolecular interaction between the C-terminal tail and the SH2 domain. [source]


Identification of in vitro phosphorylation sites in the Arabidopsis thaliana somatic embryogenesis receptor-like kinases

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 2 2009
Rumyana Karlova
Abstract The Arabidopsis thaliana somatic embryogenesis receptor-like kinase (SERK) family consists of five leucine-rich repeat receptor-like kinases (LRR-RLKs) with diverse functions such as brassinosteroid insensitive 1 (BRI1)-mediated brassinosteroid perception, development and innate immunity. The autophosphorylation activity of the kinase domains of the five SERK proteins was compared and the phosphorylated residues were identified by LC-MS/MS. Differences in autophosphorylation that ranged from high activity of SERK1, intermediate activities for SERK2 and SERK3 to low activity for SERK5 were noted. In the SERK1 kinase the C-terminally located residue Ser-562 controls full autophosphorylation activity. Activation loop phosphorylation, including that of residue Thr-462 previously shown to be required for SERK1 kinase activity, was not affected. In vivo SERK1 phosphorylation was induced by brassinosteroids. Immunoprecipitation of CFP-tagged SERK1 from plant extracts followed by MS/MS identified Ser-303, Thr-337, Thr-459, Thr-462, Thr-463, Thr-468, and Ser-612 or Thr-613 or Tyr-614 as in vivo phosphorylation sites of SERK1. Transphosphorylation of SERK1 by the kinase domain of the main brassinosteroid receptor BRI1 occurred only on Ser-299 and Thr-462. This suggests both intra- and intermolecular control of SERK1 kinase activity. Conversely, BRI1 was transphosphorylated by the kinase domain of SERK1 on Ser-887. BRI1 kinase activity was not required for interaction with the SERK1 receptor in a pull down assay. [source]