Kinase Activity (kinase + activity)

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Kinase Activity

  • creatine kinase activity
  • map kinase activity
  • protein kinase activity
  • pyruvate kinase activity
  • src kinase activity


  • Selected Abstracts


    Elevated Histone H1 (MPF) and Mitogen-activated Protein Kinase Activities in Pig Oocytes Following In Vitro Maturation do not Indicate Cytoplasmic Maturation

    REPRODUCTION IN DOMESTIC ANIMALS, Issue 2 2009
    MA Setiadi
    Contents Effects of different media (TCM 199 + BSA, TCM 199 + FCS, TCM 199 + NBCS, Whitten's medium + BSA) supplemented with estradiol-17, and two isolated and everted follicle shells on MPF and MAP kinase activities and the sensitivity to parthenogenetic activation of pig oocytes were examined at the end of culture (48 h). Elevated (P < 0.05) activities of MAP kinase were recorded in metaphase II oocytes following culture in Whitten's medium, whereas MPF levels were lowest (P < 0.05) in MII oocytes matured in TCM 199 supplemented with BSA. Oocytes matured in TCM 199 based media showed higher (P < 0.05) activation rates when compared to oocytes incubated in Whitten's medium. Whitten's medium supplemented with different protein sources (amino acids, FCS, BSA) was used to study the effects of different exposure periods to eCG/hCG stimulation on MPF and MAP kinase activities and in vivo fertilisability following culture for 48 h. MPF and MAP kinase activities were significantly increased by eCG/hCG stimulation of COCs during maturation. Further, the continuous presence of eCG/hCG during culture (48 h) significantly increased the levels of both kinases in comparison to stimulation by gonadotrophins alone during the first 24 h of incubation. In vivo fertilisation of oocytes matured in Whitten's medium supplemented with eCG/hCG for 24 or 48 h led to a significant retardation of early embryonic development compared to ovulated oocytes. In conclusion, media composition and gonadotrophin stimulation affect MPF/MAP kinase activities and the susceptibility to parthenogenetic activation of IVM oocytes. However, elevated kinase levels in pig oocytes following culture do not indicate complete cytoplasmic maturation. [source]


    Histone H1 and MAP Kinase Activities in Bovine Oocytes following Protein Synthesis Inhibition

    REPRODUCTION IN DOMESTIC ANIMALS, Issue 3-4 2001
    B Meinecke
    In vitro nuclear maturation is associated with known activity profiles of the M-phase promoting factor (MPF) and the mitogen-activated protein (MAP) kinases, which are two key regulators of mitotic and meiotic cell cycles. Initiation of meiotic resumption in vitro can be prevented by cycloheximide treatment and after removal of the inhibitor germinal vesicle breakdown takes place nearly twice as fast as in untreated controls. In this study experiments were conducted in order to examine the chromosome condensation status and the dynamics of MPF and MAP kinase activities after cycloheximide treatment (10 ,g/ml) of cumulus-enclosed oocytes for 17 and 24 h, respectively, and subsequent culture in inhibitor-free medium for various times. Bovine oocytes displayed variations in the degree of chromosome condensation at the end of the inhibitor treatment phase. Following removal of the inhibitor germinal vesicle breakdown occurred after 4,5 h of subsequent culture in inhibitor-free medium. MPF and MAP kinase exhibited low activities during the first 1,3 h following cycloheximide treatment. Increasing levels of enzyme activities were detected 4,7 h following cycloheximide treatment for 17 and 24 h, respectively, and subsequent culture in inhibitor-free medium. The patterns of enzyme activities corresponded with the accelerated nuclear maturation process. It can be concluded that cycloheximide treatment does not lead to a more synchronous course of nuclear maturation and that the activities of both, MPF and MAP kinase are initiated at least 2,5 h earlier in comparison with untreated oocytes. [source]


    Increase of Integrin-Linked Kinase Activity in Cultured Podocytes upon Stimulation with Plasma from Patients with Recurrent FSGS

    AMERICAN JOURNAL OF TRANSPLANTATION, Issue 7 2008
    M. Hattori
    Recurrent focal segmental glomerulosclerosis (FSGS) is a major challenge in the field of transplantation. Integrin-linked kinase (ILK) has emerged as a key mediator of podocyte,glomerular basement membrane (GBM) interactions. To clarify the involvement of plasma factors in FSGS recurrence, we examined the effects of plasma from FSGS patients with or without posttransplant recurrence on cultured podocytes, focusing particularly on ILK activity. Podocytes from a conditionally immortalized mouse podocyte cell line were treated with plasma from 11 FSGS patients, and ILK activity was determined using an immune complex kinase assay. Treatment with plasma from three patients with recurrence induced an increase in ILK activity. In contrast, no increase in ILK activity was observed in cultured podocytes treated with plasma from the remaining three patients with recurrence and five patients without recurrence. Cultured podocytes treated with plasma that induced ILK activity showed alterations of focal contact and detachment from the laminin matrix. In conclusion, this preliminary study provides experimental evidence suggesting the possible presence of circulating toxic factors in the plasma of some patients with recurrent FSGS, which induce an increase in podocyte ILK activity that may lead to the detachment of podocytes from the GBM. [source]


    Detection of Kinase Activity Using Versatile Fluorescence Quencher Probes,

    ANGEWANDTE CHEMIE, Issue 29 2010
    Hyun-Woo Rhee Dr.
    Licht aus! Ein Mikrofluidiksystem für den Kinase-Nachweis verwendet fluoreszierende Peptide und eine phosphatselektive fluoreszenzlöschende Sonde (siehe Bild). Das System kann für die Echtzeitüberwachung von Kinasen, das Screening von Kinaseinhibitoren und, durch Detektion abnormer Kinaseaktivität in Patientenproben, für die Krebsdiagnose eingesetzt werden. [source]


    DNA and RNA-Controlled Switching of Protein Kinase Activity

    CHEMBIOCHEM, Issue 4 2009
    Lars Röglin Dr.
    Abstract Constrained: The readily programmable nucleic acid mediated recognition is used to constrain a phosphopeptide that was flanked by PNA segments. RNA-based switching allows control over the activity of target enzymes such as the protein kinase Src. It might thus be feasible to transduce changes of the concentration of selected RNA molecules to changes of the activity of signal transduction proteins. Protein switches use the binding energy gained upon recognition of ligands to modulate the conformation and binding properties of protein segments. We explored whether the programmable nucleic acid mediated recognition might be used to design or mimic constraints that limit the conformational freedom of peptide segments. The aim was to design nucleic acid,peptide conjugates in which the peptide portion of the conjugate would change the affinity for a protein target upon hybridization. This approach was used to control the affinity of a PNA,phosphopeptide conjugate for the signal transduction protein Src kinase, which binds the cognate phosphopeptides in a linear conformation. Peptide,nucleic acid arms were attached to known peptide binders. The chimeric molecules were studied in three modes: 1) as single strands, 2) constrained by intermolecular hybridization (duplex formation) and 3) constrained by intramolecular hybridization (hairpin formation). Of note, duplexes that were designed to accommodate bulged peptide structures (for example, in hairpins or bulges) had lower binding affinities than duplexes in which the peptide was allowed to adopt a more relaxed conformation. Greater than 90-fold differences in binding affinities were observed. It was, thus, feasible to make use of DNA hybridization to reversibly switch from no to almost complete inhibition of Src-SH2,peptide binding, and vice versa. A series of DNA and PNA-based hybridization experiments revealed the importance of charges and conformational effects. Nucleic acid mediated switching was extended to the use of RNA; this enabled a regulation of the enzymatic activity of the Src kinase. The proof-of-principle results demonstrate for the first time that PNA,peptide chimeras can transduce changes of the concentration of a given RNA molecule to changes of the activity of a signal transduction enzyme. [source]


    Measurement of Homogeneous Kinase Activity for Cell Lysates Based on the Aggregation of Gold Nanoparticles

    CHEMBIOCHEM, Issue 8 2007
    Jun Oishi
    When the charge sticks. A kinase activity screening system based on the aggregation of gold nanoparticles induced by cationic substrate peptides as coagulants has been constructed. The system can conduct and monitor kinase reactions under homogeneous conditions and has been successfully applied to the kinase assay of cell lysates. [source]


    Synthesis and anti-Tyrosine Kinase Activity of 3-(Substituted-benzylidene)-1,3-dihydro-indolin Derivatives: Investigation of Their Role Against p60c-Src Receptor Tyrosine Kinase with the Application of Receptor Docking Studies.

    CHEMINFORM, Issue 46 2005
    Sureyya Olgen
    Abstract For Abstract see ChemInform Abstract in Full Text. [source]


    Structure-Driven HtL: Design and Synthesis of Novel Aminoindazole Inhibitors of c-Jun N-Terminal Kinase Activity.

    CHEMINFORM, Issue 46 2005
    Michael J. Stocks
    Abstract For Abstract see ChemInform Abstract in Full Text. [source]


    Potent Inhibition of Checkpoint Kinase Activity by a Hymenialdisine-Derived Indoloazepine (I).

    CHEMINFORM, Issue 47 2004
    Vasudha Sharma
    No abstract is available for this article. [source]


    Inhibition of Src Kinase Activity by 4-Anilino-5,10-dihydropyrimido[4,5-b]quinolines.

    CHEMINFORM, Issue 51 2003
    Diane H. Boschelli
    Abstract For Abstract see ChemInform Abstract in Full Text. [source]


    Mammalian Phosphatidylinositol 4-Kinases

    IUBMB LIFE, Issue 2 2003
    Ludwig M. G. Heilmeyer Jr.
    Abstract Three phosphatidylinositol 4-kinase isoforms, PI4K 230, 92 and 55 have been cloned and sequenced allowing a much wider characterization than the previously employed enzymological typing into type II and III enzymes. PI4K 230 and 92 contain a highly conserved catalytic core, PI4K55 one with a much lower degree of similarity. Candidate kinase motifs, deduced from the protein kinase super family, are absolutely conserved in all isoforms. Kinase activities are described based on their sensitivity and reactivity towards wortmannin, phenylarsine oxide (PAO) and 5,-p-fluorosulfonylbenzoyladenosine (FSBA). Localization of all isoforms in the cell is reported. All enzymes contain nuclear localization and export sequence motifs (NLS and NES) leading to the expectation that they can be transferred to the nucleus. PI4K230 has been found in the nucleolus, PI4K92 in the nucleus, additionally further broadening the function of these enzymes. In the cytoplasm of neuronal cells, PI4K230 is distributed evenly on membranes that are ultra structurally cisterns of the rough endoplasmatic reticulum, outer membranes of mitochondria, multivesicular bodies, and are in close vicinity of synaptic contacts. PI4K92 is functionally characterized as a key enzyme regulating Golgi disintegration/reorganization during mitosis probably via phosphorylation by cyclin-dependent kinases on well-defined sites. PI4K55 is involved in the production of second messengers, diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (InsP3) at the plasma membrane, moreover, in the endocytotic pathway in the cytoplasm. [source]


    Epidermal growth factor receptor and cancer: control of oncogenic signalling by endocytosis

    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 5a 2008
    Michael Vibo Grandal
    ,,Introduction ,,Endocytosis of EGFR -,Kinase activity -,Clathrin-coated pits -,Ubiquitination -,Effects of EGFR-ErbB2 heterodimerization on EGFR internalization ,,Cellular and molecular requirements for lysosomal degradation of EGFR -,Intracellular EGFR degradation depends on luminal sorting at multivesicular bodies -,Molecular requirements for EGFR sorting in multivesicular endosomes Abstract The epidermal growth factor receptor (EGFR) and other members of the EGFR/ErbB receptor family of receptor tyrosine kinases (RTKs) are important regulators of proliferation, angiogenesis, migration, tumorigenesis and metastasis. Overexpression, mutations, deletions and production of autocrine ligands contribute to aberrant activation of the ErbB proteins. The signalling output from EGFR is complicated given that other ErbB proteins are often additionally expressed and activated in the same cell, resulting in formation of homo-and/or heterodimers. In particular, association of EGFR with ErbB2 prevents its down-regulation, underscoring the importance of the cellular background for EGFR effects. Signalling from ErbB proteins can either be terminated by dissociation of ligand resulting in dephosphorylation, or blunted by degradation of the receptors. Although proteasomal targeting of ErbB proteins has been described, lysosomal degradation upon ligand-induced endocytosis seems to play the major role in EGFR down-regulation. Preclinical and clinical data have demonstrated that EGFR is a central player in cancer, especially in carcinomas, some brain tumours and in non-small cell lung cancer. Such studies have further validated EGFR as an important molecular target in cancer treatment. This review focuses on mechanisms involved in ligand-induced EGFR activation and endocytic down-regulation. A better understanding of EGFR biology should allow development of more tumour-selective therapeutic approaches targeting EGFR-induced signalling. [source]


    Calyculin A,induced actin phosphorylation and depolymerization in renal epithelial cells

    CYTOSKELETON, Issue 4 2003
    Luo Gu
    This study reports actin phosphorylation and coincident actin cytoskeleton alterations in renal epithelial cell line, LLC-PK1. Serine phosphorylation of actin was first observed in vitro after the cell lysate was incubated with phosphatase inhibitors and ATP. Both the phosphorylated actin and actin kinase activities were found in the cytoskeletal fraction. Actin phosphorylation was later detected in living LLC-PK1 cells after incubation with the phosphatase inhibitor calyculin A. Calyculin A,induced actin phosphorylation was associated with reorganization of the actin cytoskeleton, including net actin depolymerization, loss of cell-cell junction and stress fiber F-actin filaments, and redistribution of F-actin filaments in the periphery of the rounded cells. Actin phosphorylation was abolished by 3-h ATP depletion but not by the non-specific kinase inhibitor staurosporine. These results demonstrate that renal epithelial cells contain kinase/phosphatase activities and actin can be phosphorylated in LLC-PK1 cells. Actin phosphorylation may play an important role in regulating the organization of the actin cytoskeleton in renal epithelium. Cell Motil. Cytoskeleton 54:286,295, 2003. © 2003 Wiley-Liss, Inc. [source]


    D-2-Hydroxyglutaric acid inhibits creatine kinase activity from cardiac and skeletal muscle of young rats

    EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 10 2003
    C. G. Da Silva
    Abstract Background, Tissue accumulation of high amounts of D-2-hydroxyglutaric acid (DGA) is the biochemical hallmark of the inherited neurometabolic disorder D-2-hydroxyglutaric aciduria (DHGA). Patients affected by this disease usually present hypotonia, muscular weakness, hypothrophy and cardiomyopathy, besides severe neurological findings. However, the underlying mechanisms of muscle injury in this disorder are virtually unknown. Materials and methods, In the present study we have evaluated the in vitro role of DGA, at concentrations ranging from 0·25 to 5·0 mm, on total, cytosolic and mitochondrial creatine kinase activities from skeletal and cardiac muscle of 30-day-old Wistar rats. We also tested the effects of various antioxidants on the effects elicited by DGA. Results, We first verified that total creatine kinase (CK) activity from homogenates was significantly inhibited by DGA (22,24% inhibition) in skeletal and cardiac muscle, and that this activity was approximately threefold higher in skeletal muscle than in cardiac muscle. We also observed that CK activities from mitochondrial (Mi-CK) and cytosolic (Cy-CK) preparations from skeletal muscle and cardiac muscle were also inhibited (12,35% inhibition) by DGA at concentrations as low as 0·25 mm, with the effect being more pronounced in cardiac muscle preparations. Finally, we verified that the DGA-inhibitory effect was fully prevented by preincubation of the homogenates with reduced glutathione and cysteine, suggesting that this effect is possibly mediated by modification of essential thiol groups of the enzyme. Furthermore, ,-tocopherol, melatonin and the inhibitor of nitric oxide synthase L-NAME were unable to prevent this effect, indicating that the most common reactive oxygen and nitrogen species were not involved in the inhibition of CK provoked by DGA. Conclusion, Considering the importance of creatine kinase activity for cellular energy homeostasis, our results suggest that inhibition of this enzyme by increased levels of DGA might be an important mechanism involved in the myopathy and cardiomyopathy of patients affected by DHGA. [source]


    Role of intracellular Ca2+ and calmodulin/MAP kinase kinase/extracellular signal-regulated protein kinase signalling pathway in the mitogenic and antimitogenic effect of nitric oxide in glia- and neurone-derived cell lines

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2006
    Antonella Meini
    Abstract To elucidate the mechanism of cell growth regulation by nitric oxide (NO) and the role played in it by Ca2+, we studied the relationship among intracellular Ca2+ concentration ([Ca2+]i), mitogen-activated protein kinases [extracellular signal-regulated protein kinase (ERK)] and proliferation in cell lines exposed to different levels of NO. Data showed that NO released by low [(z)-1-[2-aminiethyl]-N-[2-ammonioethyl]amino]diazen-1-ium-1,2diolate (DETA/NO) concentrations (10 µm) determined a gradual, moderate elevation in [Ca2+]i (46.8 ± 7.2% over controls) which paralleled activation of ERK and potentiation of cell division. Functionally blocking Ca2+ or inhibiting calmodulin or MAP kinase kinase activities prevented ERK activation and antagonized the mitogenic effect of NO. Experimental conditions favouring Ca2+ entry into cells led to increased [Ca2+]i (189.5 ± 4.8%), ERK activation and cell division. NO potentiated the Ca2+ elevation (358 ± 16.8%) and ERK activation leading to expression of p21Cip1 and inhibition of cell proliferation. Furthermore, functionally blocking Ca2+ down-regulated ERK activation and reversed the antiproliferative effect of NO. Both the mitogenic and antimitogenic responses induced by NO were mimicked by a cGMP analogue whereas they were completely antagonized by selective cGMP inhibitors. These results demonstrate for the first time that regulation of cell proliferation by low NO levels is cGMP dependent and occurs via the Ca2+/calmodulin/MAP kinase kinase/ERK pathway. In this effect the amplitude of Ca2+ signalling determines the specificity of the proliferative response to NO possibly by modulating the strength of ERK activation. In contrast to the low level, the high levels (50,300 µm) of DETA/NO negatively regulated cell proliferation via a Ca2+ -independent mechanism. [source]


    Localization of the A kinase anchoring protein AKAP79 in the human hippocampus

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2000
    Attila Sík
    Abstract The phosphorylation state of the proteins, regulated by phosphatases and kinases, plays an important role in signal transduction and long-term changes in neuronal excitability. In neurons, cAMP-dependent protein kinase (PKA), protein kinase C (PKC) and calcineurin (CN) are attached to a scaffold protein, A kinase anchoring protein (AKAP), thought to anchor these three enzymes to specific sites of action. However, the localization of AKAP, and the predicted sites of linked phosphatase and kinase activities, are still unknown at the fine structural level. In the present study, we investigated the distribution of AKAP79 in the hippocampus from postmortem human brains and lobectomy samples from patients with intractable epilepsy, using preembedding immunoperoxidase and immunogold histochemical methods. AKAP79 was found in the CA1, presubicular and subicular regions, mostly in pyramidal cell dendrites, whereas pyramidal cells in the CA3, CA2 regions and dentate granule cells were negative both in postmortem and in surgical samples. In some epileptic cases, the dentate molecular layer and hilar interneurons also became immunoreactive. At the subcellular level, AKAP79 immunoreactivity was present in postsynaptic profiles near, but not attached to, the postsynaptic density of asymmetrical (presumed excitatory) synapses. We conclude that the spatial selectivity for the action of certain kinases and phosphatases regulating various ligand- and voltage-gated channels may be ensured by the selective presence of their anchoring protein, AKAP79, at the majority of glutamatergic synapses in the CA1, but not in the CA2/CA3 regions, suggesting profound differences in signal transduction and long-term synaptic plasticity between these regions of the human hippocampus. [source]


    DAP kinase activity is critical for C2 -ceramide-induced apoptosis in PC12 cells

    FEBS JOURNAL, Issue 1 2002
    Mutsuya Yamamoto
    Exposure of PC12 cells to C2 -ceramide results in dose-dependent apoptosis. Here, we investigate the involvement of death-associated protein (DAP) kinase, initially identified as a positive mediator of the interferon-,-induced apoptosis of HeLa cells, in the C2 -ceramide-induced apoptosis of PC12 cells. DAP kinase is endogenously expressed in these cells. On exposure of PC12 cells to 30 µm C2 -ceramide, both the total (assayed in the presence of Ca2+/calmodulin) and Ca2+/calmodulin-independent (assayed in the presence of EGTA) DAP kinase activities were transiently increased 5.0- and 12.2-fold, respectively, at 10 min, and then decreased to 1.7- and 3.4-fold at 90 min. After 10 min exposure to 30 µm C2 -ceramide, the Ca2+/calmodulin independent activity/ total activity ratio increased from 0.22 to 0.60. These effects were dependent on the C2 -ceramide concentration. C8 -ceramide, another active ceramide analog, also induced apoptosis and activated DAP kinase, while C2 -dihydroceramide, an inactive ceramide analog, failed to induce apoptosis and increase DAP kinase activity. Furthermore, transfection studies revealed that overexpression of wild-type DAP kinase enhanced the sensitivity to C2 - and C8 -ceramide, while a catalytically inactive DAP kinase mutant and a construct containing the death domain and C-terminal tail of DAP kinase, which act in a dominant-negative manner, rescued cells from C2 -, and C8 -ceramide-induced apoptosis. These findings demonstrate that DAP kinase is an important component of the apoptotic machinery involved in ceramide-induced apoptosis, and that the intrinsic DAP kinase activity is critical for ceramide-induced apoptosis. [source]


    Heptachlor and o-p,DDT effects on protein kinase activities associated with human placenta particulate fractions

    JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 3 2009
    Gladis Magnarelli
    Abstract Organochlorine pesticides have been detected in placenta. The ability of heptachlor (HC) and 1,1,1-tricholoro-2-(2-chlorophenyl)-2-4-chlorophenyl)ethane (o-p,DDT) to interfere with protein phosphorylation was evaluated. In vitro incubations of cell-free placental villi homogenates with a concentration range 1,100 µM were performed. In particulate fractions, total serine/threonine kinase activity was increased by 10 µM HC and o-p, DDT (59% and 82%, respectively). Maximum eightfold increase was observed with 10 µM o-p, DDT on protein kinase A activity. By contrast, protein kinase C activity was reduced by 10 µM HC and o-p, DDT (40% and 52%, respectively). Endogenous substrate phosphorylation studies demonstrated that slight but significant increase in 24-kDa band labeling was produced in nuclear samples with 1, 10, and 100 µM HC and 100 µM o-p, DDT. Exposition to 100 µM HC increased 85-kDa band labeling. In mitochondrial fractions, 10 µM HC and o-p, DDT increased 24- and 65-kDa bands' labeling. These data indicate that both pesticides affect protein kinase activities in particulate fraction. Nuclear compartmentalization of these compounds, insertion in membranes, and chemical stress production may be associated to the observed effects, thus suggesting deleterious consequences in signaling pathways. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:185,192, 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.20277 [source]


    PTHrP Signaling Targets Cyclin D1 and Induces Osteoblastic Cell Growth Arrest,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 6 2005
    Nabanita S Datta PhD
    Abstract PTHrP control of the MC3T3-E1 cell cycle machinery showed that, during differentiation, PTHrP induced G1 growth arrest. Cyclin D1 was a critical mediator as a downstream effector of cAMP, PKC, and MAPK signaling, and the process was PKA-independent. The involvement of JunB has been found critical for PTHrP effects. Introduction: PTH-related protein (PTHrP) has been implicated in the control of bone cell turnover, but the mechanisms underlying its effect on osteoblast proliferation and differentiation have not been clearly defined. The mechanisms by which PTHrP impacts cell cycle proteins and the role of signaling pathways in differentiated osteoblasts were studied. Materials and Methods: To elucidate the role of PTHrP, flow cytometric analyses were performed using MC3T3-E1 and primary mouse calvarial cells. Relative protein abundance (Western blot), physical association of partners (immunoprecipitation), and kinase activities (in vitro kinase assays using either GST-Rb or H1-histone as substrates) of cell cycle-associated proteins in vehicle and PTHrP-treated 7-day differentiated cells were determined. ELISA and/or Northern blot analyses were done to evaluate JunB and cyclin D1 expression. SiRNA-mediated gene silencing experiments were performed to silence JunB protein. Finally, inhibitors of cAMP, protein kinase A (PKA), protein kinase C (PKC), and mitogen-activated protein kinase (MAPK) were used to determine involvement of different signaling pathways. Results: PTHrP inhibited cyclin D1 protein expression 7-fold in a dose- and time-dependent manner and increased the level of p16 protein in differentiated osteoblasts. Additionally, PTHrP reduced cyclin D1-CDK4/CDK6 and CDK1 kinase activities. Forskolin, a cAMP agonist, mimicked PTHrP action, and the PKC inhibitor, GF109203X, slightly blocked downregulation of cyclin D1, implying involvement of both cAMP and PKC. U0126, a MAPK inhibitor, alone decreased cyclin D1 protein, suggesting that the basal cyclin D1 protein is MAPK dependent. H-89, a PKA inhibitor, did not alter the effect of PTHrP on cyclin D1, suggesting a PKA-independent mechanism. Finally, expression of JunB, an activating protein-1 transcription factor, was significantly upregulated, and silencing JunB (siRNA) partially reversed the cyclin D1 response, implying involvement of JunB in the PTHrP-mediated growth arrest of MC3T3-E1 cells. Conclusion: PTHrP upregulates JunB and reduces cyclin D1 expression while inducing G1 cell cycle arrest in differentiated osteoblasts. Such regulation could be an important determinant of the life span and bone-forming activity of osteoblasts. [source]


    Aurora-A kinase phosphorylation of Aurora-A kinase interacting protein (AIP) and stabilization of the enzyme-substrate complex

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 5 2007
    Hiroshi Katayama
    Abstract Aurora-A is an oncogenic kinase that plays essential roles in mitosis as well as cell survival. Aurora-A interacting protein (AIP) was identified as a negative regulator of Aurora-A with its ectopic over expression inducing destabilization of Aurora-A protein. Here we present evidence that in human cells, contrary to the earlier report, AIP functions in stabilizing rather than destabilizing Aurora-A. Furthermore, AIP is phosphorylated on Serine 70 by Aurora-A but not Aurora-B and expression of phosphorylation mimic mutant of AIP results in prolonged protein stability compared to unphosphorylatable mutant. We observed that when co-expressed with AIP, protein levels of both Aurora-A and Aurora-B are markedly elevated regardless of their kinase activities and phosphorylation state of AIP. Interaction of Aurora kinases with AIP is necessary for this elevated stability. This phenomenon is commonly detected in several human cancer cell lines used in this study. Depletion of AIP by RNA interference decreased Aurora-A but not Aurora-B in two of the three cell lines analyzed, indicating that under physiological condition, AIP functions in stabilization of Aurora-A but not Aurora-B, though this regulation may be dependent on additional factors as well. Further, AIP siRNA induced cell cycle arrest at G2/M, which is consistent with anticipated loss of function of Aurora-A in these cells. Thus, our study provides the first evidence of a role for AIP in G2/M cell cycle progression by cooperatively regulating protein stabilization of its up-stream regulator, Aurora-A kinase through protein,protein interaction as well as protein phosphorylation. J. Cell. Biochem. 102: 1318,1331, 2007. © 2007 Wiley-Liss, Inc. [source]


    Inhibition of the p38 pathway upregulates macrophage JNK and ERK activities, and the ERK, JNK, and p38 MAP kinase pathways are reprogrammed during differentiation of the murine myeloid M1 cell line

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 1 2002
    J. Perry Hall
    Abstract Mitogen-activated protein (MAP) kinases have been implicated as important mediators of the inflammatory response. Here we report that c-Jun NH2 -terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38 MAP kinase activities are reprogrammed during the IL-6 induced macrophage-like differentiation of the murine myeloid M1 cell line. Moreover, p38 inhibition upregulates JNK and ERK activity in M1 cells and in thioglycollate-elicited peritoneal exudate macrophages. IL-6-induced M1 differentiation also induces expression of the anti-inflammatory cytokine IL-10, and p38 inhibition potentiates this increase in IL-10 expression in an ERK-dependent manner. Thus, we speculate that during inflammatory conditions in vivo macrophage p38 may regulate JNK and ERK activity and inhibit IL-10 expression. These data highlight the importance of p38 in the molecular mechanisms of macrophage function. J. Cell. Biochem. 86: 1,11, 2002. © 2002 Wiley-Liss, Inc. [source]


    Differential sensitivity to apoptosis between the human small and large intestinal mucosae: Linkage with segment-specific regulation of Bcl-2 homologs and involvement of signaling pathways,

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2001
    Rémy Gauthier
    Abstract The small and large intestines differ in their expression profiles of Bcl-2 homologs. Intestinal segment-specific Bcl-2 homolog expression profiles are acquired as early as by mid-gestation (18,20 weeks) in man. In the present study, we examined the question whether such distinctions underlie segment-specific control mechanisms of intestinal cell survival. Using mid-gestation human jejunum and colon organotypic cultures, we analyzed the impact of growth factors (namely insulin; 10 ,g/ml) and pharmacological compounds that inhibit signal transduction molecules/pathways (namely tyrosine kinases, Fak, PI3-K/Akt, and MEK/Erk) on cell survival and Bcl-2 homolog expression (anti-apoptotic: Bcl-2, Bcl-XL, Mcl-1; pro-apoptotic: Bax, Bak, Bad). The relative activation levels of p125Fak, p42Erk-2, and p57Akt were analyzed as well. Herein, we report that (1) the inhibition of signal transduction molecules/pathways revealed striking differences in their impact on cell survival in the jejunum and colon (e.g., the inhibition of p125Fak induced apoptosis with a significantly greater extent in the jejunum [,43%] than in the colon [,24%]); (2) sharp distinctions between the two segments were noted in the modulatory effects of the various treatments on Bcl-2 homolog steady-state levels (e.g., inhibition of tyrosine kinase activities in the jejunum down-regulated all anti-apoptotics analyzed while increasing Bax, whereas the same treatment in the colon down-regulated Bcl-XL only and increased all pro-apoptotics); and (3) in addition to their differential impact on cell survival and Bcl-2 homolog expression, the MEK/Erk and PI3-K/Akt pathways were found to be distinctively regulated in the jejunum and colon mucosae (e.g., insulin in the jejunum increased p42Erk-2 activation without affecting that of p57Akt, whereas the sa e treatment in the colon decreased p42Erk-2 activation while increasing that of p57Akt). Altogether, these data show that intestinal cell survival is characterized by segment-specific susceptibilities to apoptosis, which are in turn linked with segmental distinctions in the involvement of signaling pathways and the regulation of Bcl-2 homolog steady-state levels. Therefore, these indicate that cell survival is subject to segment-specific control mechanisms along the proximal-distal axis of the intestine. J. Cell. Biochem. 82: 339,355, 2001. © 2001 Wiley-Liss, Inc. [source]


    Suppressive role of endogenous regucalcin in the enhancement of protein kinase activity with proliferation of cloned rat hepatoma cells (H4-II-E)

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue S36 2001
    Shyuichiroh Inagaki
    Abstract The role of endogenous regucalcin, which is a regulatory protein in calcium signaling, in the regulation of protein kinase activity in the proliferation of the cloned rat hepatoma cells (H4-II-E) was investigated. Hepatoma cells were cultured for 6,72,h in the presence of fetal bovine serum (FBS; 1 or 10%). The number of cells and protein kinase activity in the 5500,g supernatant of cell homogenate was significantly increased 24 and 48,h after the culture with FBS (1 or 10%); the culture with 10% FBS was potent effect as compared with that of 1% FBS. FBS (10%)-increased protein kinase activity preceded a significant elevation of cell number of 6,h after culture. Serum stimulation-induced increase in protein kinase activity was significantly decreased in the presence of trifluoperazine (50,,M), staurosporine (10,6,M) or genistein (10,5,M) in the enzyme reaction mixture. The presence of anti-regucalcin monoclonal antibody (40 or 80,ng/ml) in the reaction mixture caused a significant increase in protein kinase activity in the cells cultured with FBS (1 or 10%). This increase was completely blocked by addition of regucalcin (10,6,M), which can reveal an inhibitory effect on protein kinase activity. Moreover, the effect of antibody in increasing protein kinase activity was significantly inhibited in the presence of trifluoperazine, staurosporine, or genistein, indicating that endogenous regucalcin has an inhibitory effect on Ca2+/calmodulin-dependent protein kinase, protein kinase C, and protein tyrosine kinase. The present study suggests that endogenous regucalcin plays a suppressive role in the enhancement of various protein kinase activities associated with a proliferation of the cloned rat hepatoma cells (H4-II-E). J. Cell. Biochem. 36: 12-18, 2001. © 2001 Wiley-Liss. Inc. [source]


    Quinolinic acid modulates the activity of src family kinases in rat striatum: in vivo and in vitro studies

    JOURNAL OF NEUROCHEMISTRY, Issue 5 2006
    Alessio Metere
    Abstract Quinolinic acid (QA) has been shown to evoke neurotoxic events via NMDA receptor (NMDAR) overactivation and oxidative stress. NMDARs are particularly vulnerable to free radicals, which can modulate protein tyrosine kinase (PTK) and phosphotyrosine phosphatase (PTP) activities. The src family of tyrosine kinases are associated with the NMDAR complex and regulate NMDA channel function. Because QA is an NMDAR agonist as well as a pro-oxidant agent, we investigated whether it may affect the activity of PTKs and PTPs in vivo and in vitro. In synaptosomes prepared from striata dissected 15 min, 30 min or 15 days after bilateral injection of QA we observed modulation of the phosphotyrosine pattern; a significant decrease in PTP activity; and a sustained increase in c-src and lyn activity at 15 and 30 min after treatment with QA, followed by a decrease 2 weeks later. Striatal synaptosomes treated in vitro with QA showed time- and dose-dependent modulation of c-src and lyn kinase activities. Moreover, the nitric oxide synthase inhibitor NG -nitro- l -arginine-methyl ester, the NMDAR antagonist d -2-amino-5-phosphonovaleric acid and pyruvate suppressed the QA-induced modulation of c-src activity. These findings suggest a novel feature of QA in regulating src kinase activity through the formation of reactive radical species and/or NMDAR overactivation. [source]


    L -NAME reverses quinolinic acid-induced toxicity in rat corticostriatal slices: Involvement of src family kinases

    JOURNAL OF NEUROSCIENCE RESEARCH, Issue 12 2007
    Cinzia Mallozzi
    Abstract Quinolinic acid (QA) is an endogenous excitotoxin acting on N -methyl- d -aspartate receptors (NMDARs) that leads to the pathologic and neurochemical features similar to those observed in Huntington's disease (HD). The mechanism of QA toxicity also involves free radicals formation and oxidative stress. NMDARs are particularly vulnerable to the action of reactive oxygen species (ROS) and reactive nitrogen species (RNS) that can act as modulators of the activity of protein tyrosine kinases (PTKs) and phosphotyrosine phosphatases (PTPs). Because QA is able to activate neuronal nitric oxide synthase (nNOS) as well as to stimulate the NMDARs, we evaluated the effect of N,-Nitro- l -arginine-methyl ester (l -NAME), a selective nNOS inhibitor, on QA-induced neurotoxicity in rat corticostriatal slices. In electrophysiologic experiments we observed that slice perfusion with QA induced a strong reduction of field potential (FP) amplitude, followed by a partial recovery at the end of the QA washout. In the presence of l -NAME the recovery of FP amplitude was significantly increased with respect to QA alone. In synaptosomes, prepared from corticostriatal slices after the electrophysiologic recordings, we observed that l -NAME pre-incubation reversed the QA-mediated inhibitory effects on protein tyrosine phosphorylation pattern, c-src, lyn, and fyn kinase activities and tyrosine phosphorylation of NMDAR subunit NR2B, whereas the PTP activity was not recovered in the presence of l -NAME. These findings suggest that NO plays a key role in the molecular mechanisms of QA-mediated excitotoxicity in experimental model of HD. © 2007 Wiley-Liss, Inc. [source]


    Alcohol Stimulates Ciliary Motility of Isolated Airway Axonemes Through a Nitric Oxide, Cyclase, and Cyclic Nucleotide-Dependent Kinase Mechanism

    ALCOHOLISM, Issue 4 2009
    Joseph H. Sisson
    Background:, Lung mucociliary clearance provides the first line of defense from lung infections and is impaired in individuals who consume heavy amounts of alcohol. Previous studies have demonstrated that this alcohol-induced ciliary dysfunction occurs through impairment of nitric oxide (NO) and cyclic nucleotide-dependent kinase-signaling pathways in lung airway ciliated epithelial cells. Recent studies have established that all key elements of this alcohol-driven signaling pathway co-localize to the apical surface of the ciliated cells with the basal bodies. These findings led us to hypothesize that alcohol activates the cilia stimulation pathway at the organelle level. To test this hypothesis we performed experiments exposing isolated demembranated cilia (isolated axonemes) to alcohol and studied the effect of alcohol-stimulated ciliary motility on the pathways involved with isolated axoneme activation. Methods:, Isolated demembranated cilia were prepared from bovine trachea and activated with adenosine triphosphate. Ciliary beat frequency, NO production, adenylyl and guanylyl cyclase activities, cAMP- and cGMP-dependent kinase activities were measured following exposure to biologically relevant concentrations of alcohol. Results:, Alcohol rapidly stimulated axoneme beating 40% above baseline at very low concentrations of alcohol (1 to 10 mM). This activation was specific to ethanol, required the synthesis of NO, the activation of soluble adenylyl cyclase (sAC), and the activation of both cAMP- and cGMP-dependent kinases (PKA and PKG), all of which were present in the isolated organelle preparation. Conclusions:, Alcohol rapidly and sequentially activates the eNOS,NO,GC,cGMP,PKG and sAC,cAMP, PKA dual signaling pathways in isolated airway axonemes. These findings indicate a direct effect of alcohol on airway cilia organelle function and fully recapitulate the alcohol-driven activation of cilia known to exist in vivo and in intact lung ciliated cells in vitro following brief moderate alcohol exposure. Furthermore, these findings indicate that airway cilia are exquisitely sensitive to the effects of alcohol and substantiate a key role for alcohol in the alterations of mucociliary clearance associated with even low levels of alcohol intake. We speculate that this same axoneme-based alcohol activation pathway is down regulated following long-term high alcohol exposure and that the isolated axoneme preparation provides an excellent model for studying the mechanism of alcohol-mediated cilia dysfunction. [source]


    Activation of cyclin-dependent kinases CDC2 and CDK2 in hepatocellular carcinoma

    LIVER INTERNATIONAL, Issue 3 2002
    Kay K. W. Li
    Abstract: Background: The cyclin-dependent kinases (CDKs) CDC2 and CDK2 are key regulators of the cell cycle. The expression of the CDK alone does not necessary reflect their true activities because they are highly regulated by post-translational mechanisms. Human hepatocellular carcinoma (HCC) is one of the most common cancers in the world, but the kinase activities of CDKs in HCC have not been examined. Methods: Here we examined the protein expression and kinase activities associated with CDC2 and CDK2 in HCC and the corresponding non-tumorous liver tissues. Results: CDC2 and CDK2 are activated in HCC in over 70% and 80% of the cases, respectively, but have little correlation with clinical parameters and PCNA expression. Interestingly, PCNA was readily detectable in extracts from non-tumorous liver, but more than 60% of samples contain higher concentration of PCNA in HCC than the corresponding non-tumorous tissues. CDC2 and CDK2 are generally activated in the same HCC samples, but the extent of their activation varied significantly, suggesting that the pathways leading to the activation of CDC2 and CDK2 can be regulated independently. Both positive regulators of CDK activity like cyclins and CDKs, and negative regulators of CDK activity like p21CIP1/WAF1 and Thr14/Tyr15 phosphorylation were up-regulated in HCC. Conclusion: CDC2 and CDK2 are activated in HCC, and this may be due to a complex interplay between the level of the cyclin, CDK, CDK inhibitors, and inhibitory phosphorylation. [source]


    Involvement of the p110, isoform of PI3K in early development of mouse embryos

    MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 4 2009
    Xiao-yan Xu
    Class I of phosphoinositide 3-kinases (PI3Ks) is characterized as a group of intracellular signal proteins possessing both protein and lipid kinase activities. Recent studies implicate class I of PI3Ks acts as indispensable mediators in early development of mouse embryos, but the molecular mechanisms are poorly defined. In this paper, mouse one-cell embryos were used to investigate a possible contribution of the catalytic subunit of PI3K, p110,, to cell cycle progression. The expression level of p110, was determined in four phases of one-cell embryos. Silencing of p110, by microinjection of p110, shRNA into one-cell embryos resulted in a G2/M arrest and prevented the activation of Akt and M-phase promoting factor (MPF). Further, microinjection of the synthesized mRNA coding for a constitutively active p110, into one-cell embryos induced cell cleavage more effectively than microinjection of wild-type p110, mRNA, whereas microinjection of mRNA of kinase-deficient p110, delayed the first mitotic cleavage. Taken together, this study demonstrates that p110, is significant for G2/M transition of mouse one-cell embryos and further emphasizes the importance of Akt in PI3K pathway. Mol. Reprod. Dev. 76: 389,398, 2009. © 2008 Wiley-Liss, Inc. [source]


    Protein synthesis and mRNA storage in cattle oocytes maintained under meiotic block by roscovitine inhibition of MPF activity

    MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 4 2004
    Céline Vigneron
    Abstract Roscovitine, a specific inhibitor of MPF kinase activity, has been shown to block efficiently and reversibly the meiotic resumption of oocytes from different species, including cattle. In view to verify that oocytes maintain germinal vesicle like molecular activities under roscovitine treatment, we compared in the present study the M-phase Promoting Factor (MPF) and Mitogen Activated Protein (MAP) kinase activities; protein synthesis and phosphorylation patterns in oocytes and cumulus cells; and CDK1 and Cyclin B messengers storage under control culture and under roscovitine inhibition. We observed that roscovitine induced a full and reversible inhibition of MPF kinase activity and of the activating phosphorylation of both ERK1/2 MAPK. During in vivo maturation, there was a highly significant increase in the relative mRNA level of both cyclin B1 and CDK1 whereas during in vitro culture, the relative amount of CDK1 messenger was reduced. These messengers may be used as markers for the optimization of in vitro maturation treatment. Roscovitine reversibly prevented this drop in relative quantities of CDK1 messenger. Oocytes cultured in the presence of roscovitine maintained a GV like profile of protein synthesis except that two proteins of 48 and 64 kDa specific of matured oocytes also appeared under roscovitine treatment. However, roscovitine did not prevent most of the modifications of protein phosphorylation pattern observed during maturation. In conclusion, results of this study revealed that the use of roscovitine did not prevent all the events related to maturation of bovine oocytes. Mol. Reprod. Dev. 69: 457,465, 2004. © 2004 Wiley-Liss, Inc. [source]


    Changes in phosphatidylinositol and phosphatidylinositol monophosphate kinase activities during the induction of somatic embryogenesis in Coffea arabica

    PHYSIOLOGIA PLANTARUM, Issue 2 2003
    María Julissa Ek-Ramos
    Evidence was obtained for the presence of phosphatidylinositol (PIK) and phosphatidylinositol monophosphate kinase (PIPK) at different developmental stages during somatic embryogenesis in Coffea arabica L. by in vitro phosphorylation of endogenous lipids in the presence of [,- 32P]ATP followed by thin-layer chromatography. The results indicate the existence of a relationship between the development stages that were analysed and the kinases found. In cells without differentiated structures (EC, embryogenic calli) phosphatidylinositol kinase and phosphatidylinositol monophosphate 5-kinase (EC 2.7.1.68) activities were present. These activities increased significantly in the first differentiated stage (PREG, preglobular structures) and decreased as the development stages advanced. Phosphatidylinositol monophosphate (PIP) formation decreased from the globular (GLO) to the cotyledonary (COT) stage. The PIP fraction contained both isomers, PI 3-P and PI 4-P. This demonstrates PI3K (EC 2.7.1.137) and PI4K (EC 2.7.1.67) activity during somatic embryogenesis in Coffea arabica L. When wortmannin, an inhibitor of PI3K and PI4K activities, was included in an in vitro assay, a dose-dependent inhibition of the formation of both isomers was observed. The addition of wortmannin to the induction medium during the PREG stage reduced the number of normal embryos. Our results suggest that PI and PIP kinases and the formation of certain phosphoinositides may play roles in the regulation of somatic embryo development in Coffea arabica L. [source]