Key Neurotransmitter (key + neurotransmitter)

Distribution by Scientific Domains

Selected Abstracts

Association of serotonin transporter gene-linked polymorphic region and variable number of tandem repeat polymorphism of the serotonin transporter gene in lichen simplex chronicus patients with psychiatric status

Necmettin Kirtak MD
Background, The serotonin (5-hydroxytryptamine; 5-HT) is a key neurotransmitter in the central nervous system and a responsible mediator for the itch. Dysregulation of serotonergic pathways has been implicated in the pathogenesis of many complex neuropsychiatric diseases. Objectives, The purpose of this study was to evaluate the relationship between lichen simplex chronicus and dysfunction and serotonin transporter (5-HTT) gene polymorphism. Methods, Thirty-nine patients with lichen simplex chronicus and 61 healthy control subjects were examined. Results, The results for the patients and control subjects were not significantly different (P > 0.05) in long/long (L/L) and long/short (L/S) genotypes of 5-HTT gene-linked polymorphic region (HTTLPR) polymorphism, but short/short S/S genotype was lower in lichen simplex chronicus patients (17.9%) than in controls (42.6%). This difference was statistically significant (P = 0.028). The results for the patients and control subjects were not significantly different in 12/12, 10/12 and 10/10 genotypes of variable number of tandem repeat (VNTR) polymorphism (P > 0.05). Beck depression inventory (BDI) scores and symptom checklist-90-revised (SCL-90) psychotic subscale were overrepresented significantly in the 12/12 genotypes than 10/12 genotypes. State and Trait Anxiety Inventory tests (STAI-I and -II) point averages were not statistically significant (P > 0.05) Conclusion, S/S genotypes of HTTLPR polymorphism in the 5-HTT gene may be related to lichen simplex chronicus and that patients who have 12/12 genotypes of VNTR polymorphism may be affected psychiatrically. [source]

Modulation of gastrointestinal permeability of low-molecular-weight heparin by L-arginine: in-vivo and in-vitro evaluation

Nusrat Abbas Motlekar
L-Arginine is the principal physiological precursor of nitric oxide (NO, a key neurotransmitter) that plays a versatile role in the physiology of the gastrointestinal tract. In this study, the efficacy of L-arginine in enhancing intestinal absorption of ardeparin, a low-molecular-weight heparin (LMWH) was investigated in Caco-2 cell monolayers and a rat model. Regional permeability studies using rat intestine were performed using a modified Ussing chamber. Cell viability in the presence of various concentrations of enhancer was determined by MTT assay. Furthermore, the eventual mucosal epithelial damage was histologically evaluated. LMWH formulated with L-arginine was administered orally to male Sprague-Dawley rats and the absorption of LMWH was determined by measuring plasma anti-factor Xa activity. Higher ardeparin in-vitro permeability (,3 fold) compared with control was observed in the presence of 2% L-arginine. Regional permeability studies indicated predominant absorption in the colon region. Cell viability studies showed no significant cytotoxicity below 0.8% L-arginine. The oral bioavailability of ardeparin formulated with L-arginine (250 mg kg,1) was increased by ,2 fold compared with control. The formulation was well tolerated by the rats and no abnormal histopathological findings were observed in intestinal tissues of rats exposed to L-arginine. These results suggest that L-arginine may be useful in enhancing the intestinal absorption of LMWHs. [source]

The ,7 nicotinic acetylcholine receptor on fibroblast-like synoviocytes and in synovial tissue from rheumatoid arthritis patients: A possible role for a key neurotransmitter in synovial inflammation

Marjolein A. Van Maanen
Objective Recent studies have suggested an important role for neurotransmitters as modulators of inflammation. Therefore, we undertook this study to investigate the expression of the ,7 subunit of the nicotinic acetylcholine receptor (,7nAChR) and its function in rheumatoid arthritis (RA). Methods The potential role of the ,7nAChR in modulating proinflammatory cytokine expression in fibroblast-like synoviocytes (FLS) was identified by screening an adenoviral short hairpin RNA (Ad.shRNA) library. An ,7-specific antibody was used for immunohistochemistry, and fluorescein isothiocyanate,labeled ,-bungarotoxin, which binds specifically to the ,7nAChR, was used for immunofluorescence. Gene expression in FLS was determined by quantitative polymerase chain reaction with primers specific for the ,7nAChR. In addition, we analyzed messenger RNA (mRNA) expression of dup,7, a variant ,7 transcript. Next, we studied the functional role of the ,7nAChR in RA FLS by examining the effects of ,7-specific agonists on the production of interleukin-6 (IL-6) and IL-8 by activated FLS. Results A screen using an Ad.shRNA library against 807 transcripts revealed that a specific ,7nAChR shRNA potently modulated IL-8 and matrix metalloproteinase expression in FLS. The ,7nAChR was expressed in the inflamed synovium from RA patients, predominantly in the intimal lining layer. We found ,7nAChR expression at both the mRNA and protein level in cultured RA FLS. FLS also constitutively expressed dup,7 mRNA. Specific ,7nAChR agonists reduced tumor necrosis factor ,,induced IL-6 and IL-8 production by FLS. Conclusion The ,7nAChR and its dup,7 variant are expressed in RA synovium, where they may play a critical role in regulating inflammation. Targeting the ,7nAChR could provide a novel antiinflammatory approach to the treatment of RA. [source]

Expression of GABAB Receptors in Magnocellular Neurosecretory Cells of Male, Virgin Female and Lactating Rats

D. S. Richards
Abstract GABA is one of the key neurotransmitters that regulate the firing activity of neurones in the supraoptic (SON) and paraventricular (PVN) nuclei. In the present study, we used immunohistochemical techniques to study the distribution and subcellular localisation of metabotropic GABAB receptors in magnocellular neurones in the SON and PVN. Robust GABAB receptor immunoreactivity (GABABR; both subunit 1 and subunit 2 of the heterodimer), was observed in the SON and PVN. At the light microcope level, GABABR immonoreactivity displayed a clustered pattern localised both intracytoplasmically and at the plasma membrane. Densitometry analysis indicated that GABABR immunoreactivity was significantly more intense in vasopressin cells than in oxytocin cells, both in male, virgin female and lactating rats, and was denser in males than in virgin females. Light and electron microscope studies indicated that cytoplasmic GABABR was localised in various organelles, including the Golgi, early endosomes and lysosomes, suggesting the cycling of the receptor within the endocytic and trafficking pathways. Some smaller clusters at the level of the cell plasma membrane were apposed to glutamic acid decarboxylase 67 immunoreactive boutons, and appeared to be colocalised with gephyrin, a constituent protein of the postsynaptic density at inhibitory synapses. The presence of GABABR immunoreactivity at synaptic and extrasynaptic sites was supported by electron microscopy. These results provide anatomical evidence for the expression of postsynaptic GABAB receptors in magnocellular neurosecretory cells. [source]