Keto Form (keto + form)

Distribution by Scientific Domains


Selected Abstracts


Reaction mechanisms between methylamine and a few Schiff bases: Ab initio potential energy surfaces of a catalytic step in semicarbazide sensitive amino oxidases (SSAO)

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 6 2001
Giuliano Alagona
Abstract The potential energy surfaces for the transamination reaction catalyzed by SSAO were explored for some of the possible reactants considered in a preliminary investigation (Comput Chem 2000, 24, 311). The proton transfer to methylamine (as a model of the catalytic base belonging to the enzyme active site),either from the keto or enol form of the reactant Schiff bases with one of the possible cofactors, pyridoxal phosphate, PLP (using as a model the pyridoxal ring protonated at N),was investigated. The enol form seems to be preferred in the region of the neutral intermediate, because even the keto form undergoes a spontaneous rearrangement to the enol form once the C, proton is delivered to methylamine, producing methylammonium. When the proton is returned back to the Schiff base (on C1), the adduct is about 1.4 kcal/mol more stable than the reactants, while a canonical electron distribution is obtainable only for the enol form. The proton transfer to methylamine was also studied in the presence of the other possible cofactor (para or ortho) topaquinone, TQ. A steep uphill pathway, similar to the keto-pyridoxal Schiff base one, is obtained using the Schiff base with pTQ, which requires a rearrangement to the final intermediate. On the contrary, using the oTQ structures with the quinonoid O on the same side of methylamine, the proton abstracted from the Schiff base goes spontaneously onto the other quinonoid oxygen. The effect on the barrier heights produced by the presence of a variety of functional groups in the vicinity of the pyridoxal ring nitrogen was also examined. 2001 John Wiley & Sons, Inc. Int J Quant Chem, 2001 [source]


Predicting the tautomeric equilibrium of acetylacetone in solution.

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 4 2010

Abstract This study investigates how the various components (method, basis set, and treatment of solvent effects) of a theoretical approach influence the relative energies between keto and enol forms of acetylacetone, which is an important model system to study the solvent effects on chemical equilibria from experiment and theory. The computations show that the most popular density functional theory (DFT) approaches, such as B3LYP overestimate the stability of the enol form with respect to the keto form by ,10 kJ mol,1, whereas the very promising SCS-MP2 approach is underestimating it. MP2 calculations indicate that in particular the basis set size is crucial. The Dunning Huzinaga double , basis (D95z(d,p)) used in previous studies overestimates the stability of the keto form considerably as does the popular split-valence plus polarization (SVP) basis. Bulk properties of the solvent included by continuum approaches strongly stabilize the keto form, but they are not sufficient to reproduce the reversal in stabilities measured by low-temperature nuclear magnetic resonance experiments in freonic solvents. Enthalpic and entropic effects further stabilize the keto form, however, the reversal is only obtained if also molecular effects are taken into account. Such molecular effects seem to influence only the energy difference between the keto and the enol forms. Trends arising due to variation in the dielectric constant of the solvent result from bulk properties of the solvent, i.e., are already nicely described by continuum approaches. As such this study delivers a deep insight into the abilities of various approaches to describe solvent effects on chemical equilibria. 2009 Wiley Periodicals, Inc. J Comput Chem, 2010 [source]


Spectroscopy and Photoreactivity of Trichochromes: Molecular Components of Pheomelanins,

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 1 2006
John D. Simon
ABSTRACT The trichochromes are a class of small molecules present in pheomelanin (the red melanin) and absent in eumelanin (the black melanin). Herein trichochrome F (TF) and decarboxy-trichochrome C (dTC) are examined. Both trichochromes are characterized by a visible absorption band, which is shown to be the result of overlapping transitions of the cis and trans isomers. The temperature dependence of the absorption spectrum of dTC suggests the additional presence of equilibrium between the enol and keto forms of the molecule. These conclusions are supported by ground-state energies of these isomers obtained using a continuum solvation model. Near-infrared emission measurements were not able to detect photoproduction of 1O2, and spin-trapping experiments revealed formation of O2*- . DNA nicking assays also revealed a low level of light-induced aerobic activity of dTC, suggesting a quantum efficiency of at most 5 10 -6 for the photo-generation of O2*- . These results are consistent with pump-probe optical experiments, which reveal efficient and nearly complete ground-state recovery within a few picoseconds of excitation. Both trichochromes are efficient quenchers of 1O2, exhibiting a bimolecular rate constant comparable with vitamin C. These results suggest that trichochromes could serve a protective role in pheomelanin pigments. [source]


Spectroscopic and theoretical investigation of capillary-induced keto,enol tautomerism of phenacyl benzoylpyridinium-type photoinitiators

POLYMER INTERNATIONAL, Issue 4 2007
Nihan Yonet
Abstract Phenacyl benzoylpyridinium (PBP) salts are effective photoinitiatiors for cationic polymerization. In this study, it is shown that PBP salts are stable in their keto forms, and undergo a reversible keto,enol tautomerization reaction when a capillary action is applied. Spectroscopic and theoretical methods are used to explain the existence of the enol forms in the capillary tube. Copyright 2006 Society of Chemical Industry Society of Chemical Industry [source]