Home About us Contact | |||
K-Ar Ages (k-ar + age)
Selected AbstractsK-Ar Ages of Tin-Polymetallic Mineralization in the Oruro Mining District, Central Bolivian Tin BeltRESOURCE GEOLOGY, Issue 4 2003Asahiko Sugaki Abstract. K-Ar age determinations were carried out on vein- and rock-forming minerals from five vein-type tin-polymetallic ore deposits of the Oruro mining district in the central part of the Bolivian tin belt. The sericite from vein selvedges and an altered host rock provides good estimates of the ages of hypogene mineralization, and supergene alunite and jarosite provide ages for erosional and weathering episodes. It is concluded that hypogene mineralization in the Oruro mining district took place during the early to middle Miocene: 15.8±0.8 Ma at San José, 20.1±l.l Ma at Morococala, 20.5±1.0 Ma at Avicaya, and 19.6±1.0 Ma at Llallagua. Fine grained supergene alunite (,34S = -10.1 960) and jarosite yield K-Ar ages of 6.7±0.7 Ma at Avicaya and 3.9±0.7 Ma at Bolivar, respectively, suggesting that erosion and chemical weathering were active at those times. [source] Epithermal Gold-Silver Mineralization of the Asachinskoe Deposit in South Kamchatka, RussiaRESOURCE GEOLOGY, Issue 4 2007Ryohei Takahashi Abstract The Asachinskoe epithermal Au-Ag deposit is a representative low-sulfidation type of deposit in Kamchatka, Russia. In the Asachinskoe deposit there are approximately 40 mineralized veins mainly hosted by dacite,andesite stock intrusions of Miocene,Pliocene age. The veins are emplaced in tensional cracks with a north orientation. Wall-rock alteration at the bonanza level (170,200 m a.s.l.) consists of the mineral assemblage of quartz, pyrite, albite, illite and trace amounts of smectite. Mineralized veins are well banded with quartz, adularia and minor illite. Mineralization stages in the main zone are divided into stages I,IV. Stage I is relatively barren quartz,adularia association formed at 4.7 ± 0.2 Ma (K-Ar age). Stage II consists of abundant illite, Cu-bearing cryptomelane and other manganese oxides and hydroxides, electrum, argentite, quartz, adularia and minor rhodochrosite and calcite. Stage III, the main stage of gold mineralization (4.5,4.4 ± 0.1,3.1 ± 0.1 Ma, K-Ar age), consists of a large amount of electrum, naumannite and Se-bearing polybasite with quartz,adularia association. Stage IV is characterized by hydrothermal breccia, where electrum, tetrahedrite and secondary covellite occur with quartz, adularia and illite. The concentration of Au+Ag in ores has a positive correlation with the content of K2O + Al2O3, which is controlled by the presence of adularia and minor illite, and both Hg and Au also have positive correlations with the light rare-earth elements. Fluid inclusion studies indicate a salinity of 1.0,2.6 wt% NaCl equivalent for the whole deposit, and ore-forming temperatures are estimated as approximately 160,190°C in stage III of the present 218 m a.s.l. and 170,180°C in stage IV of 200 m a.s.l. The depth of ore formation is estimated to be 90,400 m from the paleo-water table for stage IV of 200 m a.s.l., if a hydrostatic condition is assumed. An increase of salinity (>CNaCl, 0.2 wt%) and decrease of temperature (>T , 30°C) within a 115-m vertical interval for the ascending hydrothermal solution is calculated, which is interpreted as due to steam loss during fluid boiling. Ranges of selenium and sulfur fugacities are estimated to be logfSe2 = ,17 to ,14.5 and logfS2 = ,15 to ,12 for the ore-forming solution that was responsible for Au-Ag-Se precipitation in stage III of 200 m a.s.l. Separation of Se from S-Se complex in the solution and its partition into selenides could be due to a relatively oxidizing condition. The precipitation of Au-Ag-Se was caused by boiling in stage III, and the precipitation of Au-Ag-Cu was caused by sudden decompression and boiling in stage IV. [source] U-Pb SHRIMP Dating of Zircon from Quartz Veins of the Yangshan Gold Deposit in Gansu Province and Its Geological SignificanceACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 2 2004QI Jinzhong Abstract, The Yangshan gold deposit is a super-large fine-grained disseminated gold deposit located in southern Gansu Province. Its metallogenic age has been determined by using the cathodoluminescence image and ion probe U-Pb dating techniques. It is found that zircons from quartz veinlet of the fine-grained disseminated gold ore show characters of magmatic origin with prism idiomorphism, oscillatory zoning and dominant Th/U ratios of 0.5,1.5. Three main populations of zircons are obtained, giving average 206Pb/238U ages of 197.6±1.7 Ma, 126.9±3.2 Ma and 51.2±1.3 Ma respectively. The first age corresponds to the K-Ar age of the plagiogranite dike, while the latter two ages indicate that buried Cretaceous and Tertiary intrusives exist in the orefield, suggesting that the Yangshan gold deposit was genetically related to the three magmatic hydrothermal activities. By contrast, zircons from coarse gold-bearing quartz vein in the mining area are much older than the host rock, indicating that the vein was formed earlier and was not contaminated by later magmatic fluids. It is concluded that the coupling of multiperiodic hydrothermal activities in the mining area has contributed a lot to mineralization of the Yangshan gold deposit. [source] K-Ar age determination, whole-rock and oxygen isotope geochemistry of the post-collisional Bizmi,en and Çalt, plutons, SW Erzincan, eastern Central Anatolia, TurkeyGEOLOGICAL JOURNAL, Issue 4 2005Ayten Önal Abstract Post-collisional granitoid plutons intrude obducted Neo-Tethyan ophiolitic rocks in central and eastern Central Anatolia. The Bizmi,en and Çalt, plutons and the ophiolitic rocks that they intrude are overlain by fossiliferous and flyschoidal sedimentary rocks of the early Miocene Kemah Formation. These sedimentary rocks were deposited in basins that developed at the same time as tectonic unroofing of the plutons along E,W and NW,SE trending faults in Oligo-Miocene time. Mineral separates from the Bizmi,en and Çalt, plutons yield K-Ar ages ranging from 42 to 46,Ma, and from 40 to 49,Ma, respectively. Major, trace, and rare-earth element geochemistry as well as mineralogical and textural evidence reveals that the Bizmi,en pluton crystallized first, followed at shallower depth by the Çalt, pluton from a medium-K calcalkaline, I-type hybrid magma which was generated by magma mixing of coeval mafic and felsic magmas. Delta 18O values of both plutons fall in the field of I-type granitoids, although those of the Çalt, pluton are consistently higher than those of the Bizmi,en pluton. This is in agreement with field observations, petrographic and whole-rock geochemical data, which indicate that the Bizmi,en pluton represents relatively uncontaminated mantle material, whereas the Çalt, pluton has a significant crustal component. Structural data indicating the middle Eocene emplacement age and intrusion into already obducted ophiolitic rocks, suggest a post-collisional extensional origin. However, the pure geochemical discrimination diagrams indicate an arc origin which can be inherited either from the source material or from an upper mantle material modified by an early subduction process during the evolution of the Neo-Tethyan ocean. Copyright © 2005 John Wiley & Sons, Ltd. [source] K-Ar Ages of Tin-Polymetallic Mineralization in the Oruro Mining District, Central Bolivian Tin BeltRESOURCE GEOLOGY, Issue 4 2003Asahiko Sugaki Abstract. K-Ar age determinations were carried out on vein- and rock-forming minerals from five vein-type tin-polymetallic ore deposits of the Oruro mining district in the central part of the Bolivian tin belt. The sericite from vein selvedges and an altered host rock provides good estimates of the ages of hypogene mineralization, and supergene alunite and jarosite provide ages for erosional and weathering episodes. It is concluded that hypogene mineralization in the Oruro mining district took place during the early to middle Miocene: 15.8±0.8 Ma at San José, 20.1±l.l Ma at Morococala, 20.5±1.0 Ma at Avicaya, and 19.6±1.0 Ma at Llallagua. Fine grained supergene alunite (,34S = -10.1 960) and jarosite yield K-Ar ages of 6.7±0.7 Ma at Avicaya and 3.9±0.7 Ma at Bolivar, respectively, suggesting that erosion and chemical weathering were active at those times. [source] Fluorite Deposits at Voznesenka in the Khanka Massif, Russia: Geology and Age of MineralizationRESOURCE GEOLOGY, Issue 3 2003Kohei Sato Abstract. A huge fluorite deposit at Voznesenka in the Khanka massif, Far East Russia is concluded to have formed at ca. 450 Ma in Late Ordovician time based on the K-Ar ages for Li-micas in the fluorite ore and greisenized leucogranite within the deposit. This conclusion is inconsistent with the current view of Devonian mineralization that stemmed from widely scattered whole-rock Rb-Sr isotope data for the heterogeneous leucogranite stocks influenced by strong alteration. The Voznesenka and neighboring fluorite deposits may have formed in Cambrian limestone in relation to the intrusion of the Li-F-rich felsic magma which has a similar chemistry to representative Li-F-rich felsic rocks including topaz granite and ongonite or topaz rhyolite; these rocks may be classified as a specific group of highly fractionated felsic magmas. Biotite granite plutons exposed in the Voznesenka district are divided in age into two groups based on the CHIME age data for zircon, monazite and xenotime: Ordovician and Permian. The Ordovician plutons seem to be coeval to the fluorite deposits and are characterized by F-rich chemistry, reduced nature and association of tin mineralization with the deposition of fluorite and tourmaline. The biotite granite magmas of initially enhanced F contents could have been highly fractionated to form Li-F-rich leucogranite cupolas that provided fluorite deposits within the host limestone. Future prospecting for similar fluorite deposits is to be focused on areas of intersection between Ordovician Li-F-rich granite and Cambrian carbonate sequences. The Permian granite of southeastern margin of the Grodekovo batholith is characterized by lesser F content, oxidized nature and the lack of tin and fluorite mineralization in contrast to the Ordovician granite. The result of Permian age does not support the current view of Silurian age for the batholith and requires overall chronological reinvestigation in connection with the tectonic history of the Khanka massif because the Grodekovo is a representative of Paleozoic batholiths in Primorie. [source] Genesis and Age Constraints on Gold Deposits of the Daerae Mine, Sangju Area, Central-Northern Sobaegsan Massif, KoreaRESOURCE GEOLOGY, Issue 3 2001Seong, Taek YUN Abstract: Gold mineralization of the Daerae mine represents the first recognized example of the Jurassic gold mineralization in the Sangju area, Korea. It occurs as a single stage of quartz veins that fill fault fractures in Precambrian gneiss of the central-northern Sobaegsan Massif. The mineralogical characteristics of quartz veins, such as the simple mineralogy and relatively gold-rich (65,72 atomic % Au) nature of electrum, as well as the CO2,rich and low salinity nature of fluid inclusions, are consistent with the ,mesothermal-type' gold deposits previously recognized in the Youngdong area (about 50 km southwest of the Sangju area). Ore fluids were evolved mainly through CO2 immiscibility at temperatures between about 250 and 325 C. Vein sulfides characteristically have negative sulfur isotopic values (,1.9 to +0.2 %), which have been very rarely reported in South Korea, and possibly indicate the derivation of sulfur from an ilmenite-series granite melt. The calculated O and H isotopic compositions of hydrothermal fluids at Daerae (,18Owater = +5.2 to +5.9 %; ,Dwater = ,59 to ,67 %) are very similar to those from the Youngdong area, and indicate the important role of magmatic water in gold mineralization. The 40Ar,39Ar age dating of a pure alteration sericite sample yields a high-temperature plateau age of 188.3 0.1 Ma, indicating an early Jurassic age for the gold mineralization at Daerae. The lower temperature Ar-Ar plateau defines an age of 158.4 2.0 Ma (middle Jurassic), interpreted as reset by a subsequent thermal effect after quartz vein formation. The younger plateau age is the same as the previously reported K-Ar ages (145,171 Ma) for the other ,mesothermal,type' gold deposits in the Youngdong and Jungwon areas, Korea, which are too young in view of the new Jurassic Ar-Ar plateau age (around 188 Ma). [source] Horizontal Strain Rate in Relation to Vein Formation of the Hishikari Gold Deposits, Southern Kyushu, JapanRESOURCE GEOLOGY, Issue 1 2001Tadakazu UTO Abstract: The Hishikari deposits comprise the Honko (Main), Yamada, and Sanjin deposits. The horizontal strain in the direction (approx. N40°W normal to the general NE-SW strike of the Hishikari vein system was calculated, based on the measured total vein widths to the distance along three crosscuts. Veins were assumed to accompany no significant fault displacement in the calculation. Veins in the eastern and the middle parts of the Honko-Sanjin deposits spatially occupy 3. 2% and 1. 3%, respectively, and veins in the Yamada deposit occupy 6. 7%. Significant local variation of strain is observed in some areas. Reported K-Ar ages on adularia-quartz veins indicate the duration of vein opening to be 2. 6 × 105 yr in the Honko-Sanjin deposits and 5. 9 × 105 yr in the Yamada deposit. Horizontal strain rates were calculated to be 5. 0,12 × 10 -8 yr -1through the Hishikari deposits. The calculated strain rates at the Hishikari deposits are roughly comparable to the regional horizontal strain rate in the Recent. Widespread extensional movement in southern Kyushu seems to have been able to provide sufficient strain for the formation of the Hishikari deposits, rather than contribution of local movements. [source] Discovery of a Miocene Mafic Dyke from the Western Hills of Beijing and its Geological ImplicationsACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 3 2009Zhicheng ZHANG Abstract: The present study is the first report of a Miocene mafic dyke from the Dahuichang, in the Western Hills of Beijing. The dyke cuts the fossil-dated Changxindian Formation of Eocene sequences and yields K-Ar ages of 14,15 Ma. The dyke is fine-grained diabase and has 49.84%,50.81% SiO2 and 3.56,3.97% Na2O+K2O, high TiO2 (1.65%,1.93%) and MgO (7.36%,9.85%), and low K2O (<1.22%) contents, with Na2O>K2O and slightly varied magnesium numbers (Mg#=55.54,62.74). In trace elements geochemistry, the dyke is very similar to the Miocene basalts from Jining and Hanuoba. The enrichment of light rare earth elements ([La/Yb]N=5.03,6.12) and large ion lithophile elements (LILEs), no negative Eu anomalies, relatively high Cr (265,326 ppm) and Ni (155,262 ppm), and almost constant V concentrations (194,213 ppm) reveal that the composition close to the primary basaltic magma from an enriched-mantle source, with little crustal contamination and fractional crystallization. The basaltic magma was possibly derived from the upwelling asthenosphere mantle beneath eastern China during the Miocene lithospheric thinning. [source] |