Anisotropy Ratios (anisotropy + ratio)

Distribution by Scientific Domains


Selected Abstracts


PERMEABILITY ANISOTROPY DISTRIBUTIONS IN AN UPPER JURASSIC CARBONATE RESERVOIR, EASTERN SAUDI ARABIA

JOURNAL OF PETROLEUM GEOLOGY, Issue 2 2007
A. Sahin
Most classical reservoir engineering concepts are based on homogeneous reservoirs despite the fact that homogeneous reservoirs are the exception rather than the rule. This is especially true of carbonate reservoirs in the Middle East which are known to be highly heterogeneous. The realistic petrophysical characterization of these kinds of reservoirs is not an easy task and must include the study of directional variations of permeability. Such variation can be incorporated into engineering calculations as the square root of the ratio of horizontal to vertical permeability, a parameter known as the anisotropy ratio. This paper addresses the distribution of anisotropy ratio values in an Upper Jurassic carbonate reservoir in the Eastern Province of Saudi Arabia. Based on whole core data from a number of vertical wells, statistical distributions of horizontal and vertical permeability measurements as well as anisotropy ratios were determined. The distributions of both permeability measurements and anisotropy ratios have similar patterns characterized by considerable positive skewness. The coefficients of variation for these distributions are relatively high, indicating their very heterogeneous nature. Comparison of plots of anisotropy ratios against depth for the wells and the corresponding core permeability values indicate that reservoir intervals with lower vertical permeability yield consistently higher ratios with considerable fluctuations. These intervals are represented by lower porosity mud-rich and/or mud-rich/granular facies. Granular facies, on the other hand, yielded considerably lower ratios without significant fluctuations. [source]


Apical oxygen, 3D-2D cross over and superconductivity in Sm2,xCexCuO4,,

PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 9 2006
M. Boujida
Abstract In spite of the vast amount of experimental and theoretical articles accumulated in HTSC, the mechanism of the interaction driving charge carriers to form Cooper pairs below Tc is still unknown. The comparison of the normal state transport properties of YBa2Cu3O7,, and the Sm2,xCexCuO4,, [1, 2] might shed some light on the microscopic origin of HTSC. In comparison to the YBCO, the apical oxygen in Sm2,xCexCuO4,, [3] destroys the superconductivity via the vertical ionic bonding which localizes the charge in the Cu-O squares, however the hole transfer by moving O(4) towards the CuO2 planes, leads to the optimization of YBCO properties. The behaviour of C axis parameter vs the oxygen content cannot be explained by a BSC mechanism. The high amount of anisotropy ratio [4] is explained by the sheer square planes in NCCO system, i.e. without apical oxygen (SC with Tc maximum). From the data of the resistivity in the normal state, we conclude the observation of a 3D-2D cross over only in Sm2,xCexCuO4,, [2] and Nd2,xCexCuO4,, [5] which is also related to its high anisotropy. The competition between anisotropy and superconductivity destroys the superconducting state in the 2D limit even in the ground state. In this material the superconductivity cannot be enhanced at high temperature because the compound is a quasi 2D system (sheer square planes of CuO2) and the cuprate superconductors is a genuine three-dimensional (3D) phenomenon [6]. The Josephson coupling between the different layers is S-I-S for NCCO and S-N-S for YBCO, thus the Lawrence and Doniach model (LD) [7] with neighbouring layers coupled by the Josephson tunnelling is appropriate. In summary the behaviour of apical oxygen is intrinsically different in the two kinds of cuprates. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Anomalous phases exceeding 90° in magnetotellurics: anisotropic model studies and a field example

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2003
Wiebke Heise
SUMMARY A study of synthetic anisotropic models that explain phases exceeding 90° in magnetotellurics is presented. The basic model comprises an anisotropic layer overlain by a shallow (local) anisotropic block, with both structures inserted in a 2-D model. The 2-D strike and the anisotropy strikes (layer and block) differ. The influence of the following parameters was analysed: anisotropy strike, geometry of the block and the layer, and anisotropy ratios of the block and the layer. We show that, according to this model, the anomalous phase effect is limited to those sites above the shallow block and does not influence the regional structure, which can therefore be recovered. These results were applied to field data from a magnetotelluric profile in SW Iberia where phases greater than 90° occurred in an area in which alternating bands of schist and graphite-rich blackschists crop out, giving rise to strong macroanisotropy. [source]


Entrainment by an Extracellular AC Stimulus in a Computational Model of Cardiac Tissue

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 10 2001
JASON M. MEUNIER B.S.
Sinusoidal Stimulation of Cardiac Sheet.Introduction: Cardiac tissue can be entrained when subjected to sinusoidal stimuli, often responding with action potentials sustained for the duration of the stimulus. To investigate mechanisms responsible for both entrainment and extended action potential duration, computer simulations of a two-dimensional grid of cardiac cells subjected to sinusoidal extracellular stimulation were performed. Methods and Results: The tissue is represented as a bidomain with unequal anisotropy ratios. Cardiac membrane dynamics are governed by a modified Beeler-Reuter model. The stimulus, delivered by a bipolar electrode, has a duration of 750 to 1,000 msec, an amplitude range of 800 to 3,200 ,A/cm, and a frequency range of 10 to 60 Hz. The applied stimuli create virtual electrode polarization (VEP) throughout the sheet. The simulations demonstrate that periodic extracellular stimulation results in entrainment of the tissue. This phase-locking of the membrane potential to the stimulus is dependent on the location in the sheet and the magnitude of the stimulus. Near the electrodes, the oscillations are 1:1 or 1:2 phase-locked; at the middle of the sheet, the oscillations are 1:2 or 1:4 phase-locked and occur on the extended plateau of an action potential. The 1:2 behavior near the electrodes is due to periodic change in the voltage gradient between VEP of opposite polarity; at the middle of the sheet, it is due to spread of electrotonic current following the collision of a propagating wave with refractory tissue. Conclusion: The simulations suggest that formation of VEP in cardiac tissue subjected to periodic extracellular stimulation is of paramount importance to tissue entrainment and formation of an extended oscillatory action potential plateau. [source]


PERMEABILITY ANISOTROPY DISTRIBUTIONS IN AN UPPER JURASSIC CARBONATE RESERVOIR, EASTERN SAUDI ARABIA

JOURNAL OF PETROLEUM GEOLOGY, Issue 2 2007
A. Sahin
Most classical reservoir engineering concepts are based on homogeneous reservoirs despite the fact that homogeneous reservoirs are the exception rather than the rule. This is especially true of carbonate reservoirs in the Middle East which are known to be highly heterogeneous. The realistic petrophysical characterization of these kinds of reservoirs is not an easy task and must include the study of directional variations of permeability. Such variation can be incorporated into engineering calculations as the square root of the ratio of horizontal to vertical permeability, a parameter known as the anisotropy ratio. This paper addresses the distribution of anisotropy ratio values in an Upper Jurassic carbonate reservoir in the Eastern Province of Saudi Arabia. Based on whole core data from a number of vertical wells, statistical distributions of horizontal and vertical permeability measurements as well as anisotropy ratios were determined. The distributions of both permeability measurements and anisotropy ratios have similar patterns characterized by considerable positive skewness. The coefficients of variation for these distributions are relatively high, indicating their very heterogeneous nature. Comparison of plots of anisotropy ratios against depth for the wells and the corresponding core permeability values indicate that reservoir intervals with lower vertical permeability yield consistently higher ratios with considerable fluctuations. These intervals are represented by lower porosity mud-rich and/or mud-rich/granular facies. Granular facies, on the other hand, yielded considerably lower ratios without significant fluctuations. [source]