Home About us Contact | |||
Animal Model Systems (animal + model_system)
Selected AbstractsRating of CCl4 -induced rat liver fibrosis by blood serum glycomicsJOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, Issue 7 2007Liesbeth Desmyter Abstract Background:, Non-invasive staging of human liver fibrosis is a desirable objective that remains under extensive evaluation. Animal model systems are often used for studying human liver disease and screening antifibrotic compounds. The aim of the present study was to investigate the potential use of serum N-glycan profiles to evaluate liver fibrosis in a rat model. Methods:, Liver fibrosis and cirrhosis were induced in rats by oral administration of CCl4. Liver injury was assessed biochemically (alanine aminotransferase [ALT] activity, aspartate aminotransferase [AST] activity and total bilirubin) and histologically. The N-glycan profile (GlycoTest) was performed using DNA sequencer-assisted,fluorophore-assisted carbohydrate electrophoresis technology. In parallel, the effect of cotreatment with antifibrotic interferon-, (IFN-,) was studied. Results:, The biopsy scoring system showed that CCl4 induced early fibrosis (F < 1,2) in rats after 3 weeks of treatment, and cirrhosis (F4) after 12 weeks. Significant increases in ALT activity, AST activity and total bilirubin levels were detected only after 12 weeks of CCl4 treatment. GlycoTest showed three glycans were significantly altered in the CCl4 -goup. Peak 3 started at week 6, at an early stage in fibrosis development (F < 1,2), whereas peaks 4 and 5 occurred at week 9, at which time mild liver fibrosis (F = 1,2) had developed. The changes in the CCl4 -IFN-, group were intermediate between the CCl4 - and the control groups. Conclusion:, The GlycoTest is much more sensitive than biochemical tests for evaluating liver fibrosis/cirrhosis in the rat model. The test can also be used as a non-invasive marker for screening and monitoring the antifibrotic activity of potential therapeutic compounds. [source] Spontaneous gallbladder pathology in baboonsJOURNAL OF MEDICAL PRIMATOLOGY, Issue 2 2010J.L. Slingluff Abstract Background, Gallbladder pathology (GBP) is a relatively uncommon, naturally occurring morbidity in both baboons and humans. Methods, A retrospective analysis was performed on 7776 necropsy reports over a 20 year period to determine the prevalence of baboon GBP. Results, Ninety-seven cases of GBP were identified, yielding a 20 year population prevalence of 1.25%. GBP is more common in adult female baboons, occurring with a female to male ratio of nearly 2:1. Among gallbladder pathologies, cholecystitis (35.1%) and cholelithiasis (29.9%) were the most prevalent abnormalities, followed by hyperplasia (16.5%), edema (15.5%), amyloidosis (5.2%), fibrosis (4.1%), necrosis (4.1%), and hemorrhage (1.0%). Conclusion, Many epidemiologic similarities exist between GBP in baboons and humans suggesting that the baboon may serve as a reliable animal model system for investigating GBP in humans. [source] Host immunity modulates transcriptional changes in a multigene family (yir) of rodent malariaMOLECULAR MICROBIOLOGY, Issue 3 2005Deirdre A. Cunningham Summary Variant antigens, encoded by multigene families, and expressed at the surface of erythrocytes infected with the human malaria parasite Plasmodium falciparum and the simian parasite Plasmodium knowlesi, are important in evasion of host immunity. The vir multigene family, encoding a very large number of variant antigens, has been identified in the human parasite Plasmodium vivax and homologues (yir) of this family exist in the rodent parasite Plasmodium yoelii. These genes are part of a superfamily (pir) which are found in Plasmodium species infecting rodents, monkeys and humans (P. yoelii, P. berghei, P. chabaudi, P. knowlesi and P. vivax). Here, we show that YIR proteins are expressed on the surface of erythrocytes infected with late-stage asexual parasites, and that host immunity modulates transcription of yir genes. The surface location and expression pattern of YIR is consistent with a role in antigenic variation. This provides a unique opportunity to study the regulation and expression of the pir superfamily, and its role in both protective immunity and antigenic variation, in an easily accessible animal model system. [source] A year of unprecedented progress in Down syndrome basic researchDEVELOPMENTAL DISABILITIES RESEARCH REVIEW, Issue 3 2007Roger H. Reeves Abstract The years 2006 and 2007 saw the publication of three new and different approaches to prevention or amelioration of Down syndrome effects on the brain and cognition. We describe the animal model systems that were critical to this progress, review these independent breakthrough studies, and discuss the implications for therapeutic approaches suggested by each. © 2007 Wiley-Liss, Inc. MRDD Research Reviews 2007;13:215,220. [source] Obesity and metabolic syndrome in histone demethylase JHDM2a-deficient miceGENES TO CELLS, Issue 8 2009Takeshi Inagaki Histone H3 lysine 9 (H3K9) methylation is a crucial epigenetic mark of heterochromatin formation and transcriptional silencing. Recent studies demonstrated that most covalent histone lysine modifications are reversible and the jumonji C (JmjC)-domain-containing proteins have been shown to possess such demethylase activities. However, there is little information available on the biological roles of histone lysine demethylation in intact animal model systems. JHDM2A (JmjC-domain-containing histone demethylase 2A, also known as JMJD1A) catalyses removal of H3K9 mono- and dimethylation through iron and ,-ketoglutarate dependent oxidative reactions. Here, we demonstrate that JHDM2a also regulates metabolic genes related to energy homeostasis including anti-adipogenesis, regulation of fat storage, glucose transport and type 2 diabetes. Mice deficient in JHDM2a (JHDM2a,/,) develop adult onset obesity, hypertriglyceridemia, hypercholesterolemia, hyperinsulinemia and hyperleptinemia, which are hallmarks of metabolic syndrome. JHDM2a,/, mice furthermore exhibit fasted induced hypothermia indicating reduced energy expenditure and also have a higher respiratory quotient indicating less fat utilization for energy production. These observations may explain the obesity phenotype in these mice. Thus, H3K9 demethylase JHDM2a is a crucial regulator of genes involved in energy expenditure and fat storage, which suggests it is a previously unrecognized key regulator of obesity and metabolic syndrome. [source] Antisense oligodeoxynucleotide therapy targeting clusterin gene for prostate cancer: Vancouver experience from discovery to clinicINTERNATIONAL JOURNAL OF UROLOGY, Issue 9 2005HIDEAKI MIYAKE Abstract Background The objective of this study was to review our experience in the development of antisense (AS) oligodeoxynucleotide (ODN) therapy for prostate cancer targeting antiapoptotic gene, clusterin. Methods We initially summarized our data demonstrating that clusterin could be an optimal therapeutic target for prostate cancer, then presented the process of developing AS ODN therapy using several preclinical animal models. Finally, the preliminary data of the recently completed phase I clinical trial using AS clusterin ODN as well as the future prospects of this therapy are discussed. Results Expression of clusterin was highly up-regulated after androgen withdrawal and during progression to androgen-independence, but low or absent in untreated tissues in both prostate cancer animal model systems and human clinical specimens. Introduction of the clusterin gene into human prostate cancer cells confers resistance to several therapeutic stimuli, including androgen ablation, chemotherapy and radiation. AS ODN targeting the translation initiation site of the clusterin gene markedly inhibited clusterin expression in prostate cancer cells in a dose-dependent and sequence-specific manner. Systemic treatment with AS clusterin ODN enhanced the effects of several conventional therapies through the effective induction of apoptosis in prostate cancer xenograft models. Based on these findings, a phase I clinical trial was completed using AS clusterin ODN incorporating 2,-O-(2-methoxy)ethyl-gapmer backbone (OGX-011), showing up to 90% suppression of clusterin in prostate cancer. Conclusions The data described above identified clusterin as an antiapoptotic gene up-regulated in an adaptive cell survival manner following various cell death triggers that helps confer a phenotype resistant to therapeutic stimuli. Inhibition of clusterin expression using AS ODN technology enhances apoptosis induced by several conventional treatments, resulting in the delay of AI progression and improved survival. Clinical trials using AS ODN confirm potent suppression of clusterin expression and phase II studies will begin in early 2005. [source] Ultraviolet B Radiation of Human Skin Generates Platelet-activating Factor Receptor AgonistsPHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2010Jared B. Travers Ultraviolet B radiation (UVB) is a potent stimulator of epidermal cytokine production. In addition to cytokines, such as tumor necrosis factor-alpha (TNF-,), UVB generates bioactive lipids including platelet-activating factor (PAF). Our previous in vitro studies in keratinocytes or epithelial cell lines have demonstrated that UVB-mediated production of PAF agonists is due primarily to the pro-oxidative effects of this stimulant, resulting in the nonenzymatic production of modified phosphocholines (oxidized glycerophosphocholines). The current studies use human skin to assess whether UVB irradiation generates PAF-receptor agonists, and the role of oxidative stress in their production. These studies demonstrate that UVB irradiation of human skin results in PAF agonists, which are blocked by the antioxidant vitamin C and the epidermal growth factor receptor inhibitor PD168393. Inasmuch as UVB-generated PAF agonists have been implicated in animal model systems as being involved in photobiologic processes including systemic immunosuppression and cytokine (TNF-,) production, these studies indicate that this novel activity could be involved in human disease. [source] Photochemoprevention of skin cancer by botanical agentsPHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE, Issue 2 2003Sleem F'guyer Photochemoprevention has become an important armamentarium in the fight against ultraviolet radiation (UVR)-induced damage to the skin. Among many UVR-induced damages, skin cancer is of the greatest concern as its rates have been steadily increasing in recent years and the same trend is expected to continue in the future. Ultraviolet radiation increases oxidative stress in skin cells by causing excessive generation of reactive oxygen species (ROS), leading to cancer initiation and promotion. Antioxidants have the capability to quench these ROS and much recent work shows that some of these can inhibit many UVR-induced signal transduction pathways. Thus, identifying nontoxic strong antioxidants , capable of preventing UVR-induced skin cancer , has become an important area of research. The use of botanical antioxidants in skin care products is growing in popularity. A wide range of such agents has been shown to prevent skin cancer in animal model systems. New agents are constantly being investigated; however, only a few have been tested for their efficacy in humans. Animal model and cell culture studies have clarified that antioxidants act by several mechanisms at various stages of skin carcinogenesis. This review focuses on skin cancer photochemopreventive effects of selected botanical antioxidants. [source] Taking it to the max: The genetic and developmental mechanisms coordinating midfacial morphogenesis and dysmorphologyCLINICAL GENETICS, Issue 3 2004TC Cox The rapid proliferative expansion and complex morphogenetic events that coordinate the development of the face underpin the sensitivity of this structure to genetic and environmental insult and provide an explanation for the high incidence of midfacial malformation. Most notable of these malformations is cleft lip with or without cleft palate (CLP) that, with an incidence of between one in 600 and one in 1000 live births, is the fourth most common congenital disorder in humans. Despite the obvious global impact of the disorder and some recent progress in identifying causative genes for some prominent syndromal forms, our knowledge of the key genetic factors contributing to the more common isolated cases of CLP is still remarkably patchy. The current understanding of the molecular and cellular processes that orchestrate morphogenesis of the midface, with emphasis on events leading to fusion of the lip and primary palate, is detailed in this review. The roles of crucial factors identified from relevant animal model systems, including BMP4 and SHH, and the likely events perturbed by key genes pinpointed in human studies [such as PVRL1, IRF6p63, MID1, MSX1, and PTCH1] are discussed in this light. New candidates for human CLP genes are also proposed. [source] |