Kunlun Block (kunlun + block)

Distribution by Scientific Domains


Selected Abstracts


Absence of Archean basement in the South Kunlun Block: Nd-Sr-O isotopic evidence from granitoids

ISLAND ARC, Issue 1 2003
Chao Yuan
Abstract The West Kunlun mountain range along the northwestern margin of the Tibetan Plateau is crucial in understanding the early tectonic history of the region. It can be divided into the North and South Kunlun Blocks, of which the former is considered to be part of the Tarim Craton, whereas consensus was not reached on the nature and origin of the South Kunlun Block. Samples were collected from the 471 Ma Yirba Pluton, the 405 Ma North Kudi Pluton and the 214 Ma Arkarz Shan Intrusive Complex. These granitoids cover approximately 60% of the Kudi area in the South Kunlun Block. Sr, Nd, and O isotope compositions preclude significant involvement of mantle-derived magma in the genesis of these granitoids; therefore, they can be used to decipher the nature of lower,mid crust in the area. All samples give Mesoproterozoic Nd model ages (1.1,1.5 Ga) similar to those of the exposed metamorphic complex of this block but significantly different from those of the basement of the North Kunlun Block (2.8 Ga). This indicates that the South Kunlun Block does not have an Archean basement, and, thus, does not support the microcontinent model that suggests the South Kunlun Block was a microcontinent once separated from and later collided back with the North Kunlun Block. [source]


Collision Tectonics between the Tarim Block (Basin) and the Northwestern Tibet Plateau: New Observations from a Multidisciplinary Geoscientific Investigation in the Western Kunlun Mountains

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 2 2001
XIAO Xuchang
Abstract New results from deep seismic reflection profiling, wide-angle reflection-refraction profiling and broadband seismic experiments reveal that a series of south-dipping reflectors occur on the southern margin of the Tarim block (basin). However, it is these south-dipping structures that are intercepted by another series of north-dipping reflectors at depths from 30 to about 150 km beneath the foreland of the W Kunlun Mountains. No evidence from the above geophysical data as well as geochemical and surface geological data indicate the southward subduction of the Tarim block beneath the W Kunlun Mountains (NW Tibet plateau), forming the so-called "two-sided subduction" model for the Tibet plateau as proposed by previous studies. So the authors infer that the tectonic interaction between the Tarim block and the W Kunlun block was chiefly affected by a "horizontal compression in opposite directions", which brought about "face-to-face contact" between these two lithospheric blocks and led to the thickening, shortening and densifying of the lithosphere. Hence a "delamination" was formed due to the gravitational instability created by the thickening and densifying; then alkaline basic volcanic rocks (mainly shoshonite series) was erupted along the northern margin of the Tibet plateau owing to the delamination. This inference for the formation of the alkaline basic volcanics has been confirmed by recent geochemical and petrological studies in Tibet, indicating that different contacts control different magmatic activities: the alkali basalts are always developed in the "horizontal shortening boundary (contact)" on the northern margin of the Tibet plateau, while the muscovite granite and two-mica granite (leucogranite) in the "subductional contact" on the southern margin of the Tibet plateau. [source]