Knockdown Approach (knockdown + approach)

Distribution by Scientific Domains

Selected Abstracts

Functional analysis of CBP/p300 in embryonic orofacial mesenchymal cells

D.R. Warner
Abstract CREB binding protein (CBP) and the close structural homolog, p300, are nuclear coactivators of multiple signaling pathways that play important roles in embryonic development and cellular homeostasis. TGF, regulates the proliferation rate of many cell types and has been demonstrated to inhibit the growth rate of mouse embryonic maxillary mesenchymal (MEMM) cells. The role of CBP and p300 in TGF,-mediated control of proliferation of MEMM cells was thus investigated using an in vitro gene knockdown approach. TGF, reporter assays demonstrated that p300 mRNA knockdown via targeted siRNAs led to a reduction in the response to TGF,, whereas knockdown of CBP by the same approach had an insignificant effect. In MEMM cell proliferation assays, siRNA-mediated knockdown of CBP and/or p300 had little impact upon TGF,-mediated growth inhibition; however, the basal rate of proliferation was increased. Inhibition of p300 activity via overexpression of a dominant-negative mutant (p300,C/H3) led to significant inhibition of TGF,-mediated activation of p3TP-lux. As with the siRNA knockdown approach, p300,C/H3 also increased the basal rate of cell proliferation of MEMM cells. CBP/p300 siRNA knockdown had a significant but incomplete inhibition of TGF,-induction of matrix metalloproteinase-9 (gelatinase B) expression. These data demonstrate that p300 is involved in Smad-mediated transcription of p3TP-lux, however, its role (and that of CBP) in biological processes such as the control of cell proliferation and extracellular matrix metabolism is more complex and may be mediated via mechanisms beyond coactivator recruitment. J. Cell. Biochem. 99: 1374,1379, 2006. 2006 Wiley-Liss, Inc. [source]

AtDEK1 is essential for specification of embryonic epidermal cell fate

Kim L. Johnson
Summary The specification of epidermal (L1) identity occurs early during plant embryogenesis. Here we show that, in Arabidopsis, AtDEK1 encodes a key component of the embryonic L1 cell-layer specification pathway. Loss of AtDEK1 function leads to early embryo lethality characterized by a severe loss of cell organization in the embryo proper and abnormal cell divisions within the suspensor. Markers for L1 identity, ACR4 and ATML1, are not expressed in homozygous mutant embryos. In order to clarify the function of AtDEK1 further, an RNAi knockdown approach was used. This allowed embryos to partially complete embryogenesis before losing AtDEK1 activity. Resulting seedlings showed a specific loss of epidermal cell identity within large portions of the cotyledons. In addition, meristem structure and function was systematically either reduced or entirely lost. AtDEK1 expression is not restricted to the L1 epidermal cell layer at any stage in development. This is consistent with AtDEK1 playing an upstream role in the continuous generation or interpretation of positional information required for epidermal specification. Our results not only identify a specific role for AtDEK1 during embryogenesis, but underline the potential key importance of L1 specification at the globular stage for subsequent progression through embryogenesis. [source]

Differential regulation of NMDA receptor function by DJ-1 and PINK1

AGING CELL, Issue 5 2010
Ning Chang
Summary Dysfunction of PTEN-induced kinase 1 (PINK1) or DJ-1 promotes neuronal death and is implicated in the pathogenesis of Parkinson's disease, but the underlying mechanisms remain unclear. Given the roles of N -methyl- d- aspartate receptor (NMDAr)-mediated neurotoxicity in various brain disorders including cerebral ischemia and neurodegenerative diseases, we investigated the effects of PINK1 and DJ-1 on NMDAr function. Using protein overexpression and knockdown approaches, we showed that PINK1 increased NMDAr-mediated whole-cell currents by enhancing the function of NR2A-containing NMDAr subtype (NR2ACNR). However, DJ-1 decreased NMDAr-mediated currents, which was mediated through the inhibition of both NR2ACNR and NR2B-containing NMDAr subtype (NR2BCNR). We revealed that the knockdown of DJ-1 enhanced PTEN expression, which not only potentiated NR2BCNR function but also increased PINK1 expression that led to NR2ACNR potentiation. These results indicate that NMDAr function is differentially regulated by DJ-1-dependent signal pathways DJ-1/PTEN/NR2BCNR and DJ-1/PTEN/PINK1/NR2ACNR. Our results further showed that the suppression of DJ-1, while promoted NMDA-induced neuronal death through the overactivation of PTEN/NR2BCNR-dependent cell death pathway, induced a neuroprotective effect to counteract DJ-1 dysfunction-mediated neuronal death signaling through activating PTEN/PINK1/NR2ACNR cell survival,promoting pathway. Thus, PINK1 acts with DJ-1 in a common pathway to regulate NMDAr-mediated neuronal death. This study suggests that the DJ-1/PTEN/NR2BCNR and DJ-1/PTEN/PINK1/NR2ACNR pathways may represent potential therapeutic targets for the development of neuroprotection strategy in the treatment of brain injuries and neurodegenerative diseases such as Parkinson's disease. [source]

Induction of CCL13 expression in synovial fibroblasts highlights a significant role of oncostatin M in rheumatoid arthritis

Christoph Hintzen
Objective To investigate the molecular mechanisms of CCL13/monocyte chemoattractant protein 4 (MCP-4) chemokine expression through proinflammatory cytokines in different primary human fibroblasts and the contribution of CCL13 to monocyte migration. Methods Using RNase protection assays and enzyme-linked immunosorbent assays, we quantified the expression of CCL13 compared with that of CCL2/MCP-1 in primary human fibroblasts. Boyden chamber assays were performed to determine the importance of CCL13 for migration of primary monocytes. Pharmacologic inhibitors as well as small interfering RNA knockdown approaches were used to investigate the signaling pathways regulating CCL13 expression. Results The interleukin-6 (IL-6),type cytokine oncostatin M (OSM) was a powerful inducer of CCL13 expression in primary synovial fibroblasts from patients with rheumatoid arthritis (RA) as well as those from healthy control subjects but not in other types of fibroblasts. Neither IL-6 nor tumor necrosis factor , could stimulate the expression of CCL13 in synovial fibroblasts; IL-1, was a very weak inducer. Synovial fibroblasts from patients with RA constitutively produced low amounts of CCL13, which was partially dependent on constitutive production of OSM. By investigating the underlying molecular mechanism, we identified STAT-5, ERK-1/2, and p38 as critical factors involved in OSM-dependent transcription and messenger RNA stabilization of CCL13. Conclusion In contrast to other prominent cytokines involved in the pathogenesis of RA, OSM can strongly up-regulate the expression of CCL13, a chemokine recently identified in the synovial fluid of patients with RA. Despite potent OSM-induced signal transduction in all types of fibroblasts analyzed, only synovial fibroblasts secreted CCL13, which might be indicative of tissue-specific imprinting of different fibroblasts during development. [source]