Home About us Contact | |||
Km Resolution (km + resolution)
Selected AbstractsThe influence of natural conditions on the spatial variation of climate in Lapland, northern FinlandINTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 9 2003Andrea Vajda Abstract At high latitudes in Lapland, near the climatological timberline, forestry and other environmental research require detailed information about the spatial variation of climate. In this study, the influence of local geographical factors on the climate in northern Finland (Lapland), as well as the applicability of the kriging interpolation method in the case of detailed spatial resolution, were examined. The spatial analysis of mean, maximum, minimum temperatures, length of the frost-free season, degree-days and daily range was made using a 1 km × 1 km resolution. The time period used was 1971,2000. We studied whether taking account of external forcing, such as lake coverage and altitude, would improve the accuracy of spatial interpolation of climatological parameters. The geographical factors of coordinates, elevation, lakes and sea influence on the regional features of the climate were examined. According to the results of this study, only geographical position and local relief have a significant influence on regional climate in Lapland. The effect of lakes and sea seems to be secondary. Copyright © 2003 Royal Meteorological Society [source] A Calibrated, High-Resolution GOES Satellite Solar Insolation Product for a Climatology of Florida Evapotranspiration,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 6 2009Simon J. Paech Paech, Simon J., John R. Mecikalski, David M. Sumner, Chandra S. Pathak, Quinlong Wu, Shafiqul Islam, and Taiye Sangoyomi, 2009. A Calibrated, High-Resolution GOES Satellite Solar Insolation Product for a Climatology of Florida Evapotranspiration. Journal of the American Water Resources Association (JAWRA) 45(6):1328-1342. Abstract:, Estimates of incoming solar radiation (insolation) from Geostationary Operational Environmental Satellite observations have been produced for the state of Florida over a 10-year period (1995-2004). These insolation estimates were developed into well-calibrated half-hourly and daily integrated solar insolation fields over the state at 2 km resolution, in addition to a 2-week running minimum surface albedo product. Model results of the daily integrated insolation were compared with ground-based pyranometers, and as a result, the entire dataset was calibrated. This calibration was accomplished through a three-step process: (1) comparison with ground-based pyranometer measurements on clear (noncloudy) reference days, (2) correcting for a bias related to cloudiness, and (3) deriving a monthly bias correction factor. Precalibration results indicated good model performance, with a station-averaged model error of 2.2 MJ m,2/day (13%). Calibration reduced errors to 1.7 MJ m,2/day (10%), and also removed temporal-related, seasonal-related, and satellite sensor-related biases. The calibrated insolation dataset will subsequently be used by state of Florida Water Management Districts to produce statewide, 2-km resolution maps of estimated daily reference and potential evapotranspiration for water management-related activities. [source] Numerical simulations of the 12,13 August 2002 flooding event in eastern GermanyTHE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 600 2004G. Zängl Abstract In this paper, high-resolution numerical simulations of the 12,13 August 2002 flooding event in eastern Germany are presented. The simulations are performed with the Penn State/National Center for Atmospheric Research mesoscale model MM5 in a four-domain configuration with a finest horizontal resolution of 1 km. Sensitivity experiments are performed with coarser resolutions (3 and 9 km), with different cloud microphysical parametrizations and with a different date of initialization. Moreover, tests with 1 km resolution but the smoothed topography of the 9 km runs are conducted in order to isolate the contribution of the model topography to the differences between the 1 km runs and the 9 km runs. The results show that the high-resolution runs reproduce the observed structure of the precipitation field very well. In particular, the location of the rainfall maximum is correct to within 15 km. The quantitative agreement between model results and observations is fairly good in regions with light to moderate rain, but large amounts of precipitation tend to be underpredicted. For observed 36-hour rainfall accumulations exceeding 200 mm, the negative bias typically ranges between 15 and 30 Copyright © 2004 Royal Meteorological Society. [source] Large-scale human effects on an arid African raptor communityANIMAL CONSERVATION, Issue 5 2010J. D. Anadón Abstract In the current scenario of biodiversity crisis there is a growing need for identifying causes of changes in biodiversity at large scales. Here we assess factors driving raptor community structure in the Sahel, a region suffering a wide range of environmental degradation and a vital area for European migrant birds. Using road surveys, we estimated the effects of population size, human settlement patterns (e.g. urban vs. nomadic) and land use on the raptor community, taking into account the major natural role played by productivity. Total raptor richness values were similar to those described for other steppe regions of the world, with one super-abundant migrant species, the black kite Milvus migrans; however, richness of resident raptors was strikingly lower than expected, with most large body-size African species (both eagles and vultures) absent. Raptor richness was strongly correlated with human activities in a scale-dependent fashion. At a 25 km resolution, raptor richness was driven by habitat and productivity, with a positive response to crops. At a smaller scale, human population was positively related with wintering species richness but negatively with richness of resident ones, perhaps as a consequence of non-agricultural activities such as direct harvesting and different forms of habitat degradation (e.g. overgrazing or firewood collection). Subsistence economies in systems with low natural environmental heterogeneity and with a human population over carrying capacity, such as the Sahel, may lead to exhausted biological systems even in the absence of intensive agricultural or urban land-use changes, as shown by the deeply impoverished sedentary raptor community. Our results suggest that, because habitat and productivity seem to play a relevant role in driving species richness, climate change may have a major effect on the raptor community of the Sahel. [source] Modelling species distributions in Britain: a hierarchical integration of climate and land-cover dataECOGRAPHY, Issue 3 2004Richard G. Pearson A modelling framework for studying the combined effects of climate and land-cover changes on the distribution of species is presented. The model integrates land-cover data into a correlative bioclimatic model in a scale-dependent hierarchical manner, whereby Artificial Neural Networks are used to characterise species' climatic requirements at the European scale and land-cover requirements at the British scale. The model has been tested against an alternative non-hierarchical approach and has been applied to four plant species in Britain: Rhynchospora alba, Erica tetralix, Salix herbacea and Geranium sylvaticum. Predictive performance has been evaluated using Cohen's Kappa statistic and the area under the Receiver Operating Characteristic curve, and a novel approach to identifying thresholds of occurrence which utilises three levels of confidence has been applied. Results demonstrate reasonable to good predictive performance for each species, with the main patterns of distribution simulated at both 10 km and 1 km resolutions. The incorporation of land-cover data was found to significantly improve purely climate-driven predictions for R. alba and E. tetralix, enabling regions with suitable climate but unsuitable land-cover to be identified. The study thus provides an insight into the roles of climate and land-cover as determinants of species' distributions and it is demonstrated that the modelling approach presented can provide a useful framework for making predictions of distributions under scenarios of changing climate and land-cover type. The paper confirms the potential utility of multi-scale approaches for understanding environmental limitations to species' distributions, and demonstrates that the search for environmental correlates with species' distributions must be addressed at an appropriate spatial scale. Our study contributes to the mounting evidence that hierarchical schemes are characteristic of ecological systems. [source] |