Home About us Contact | |||
Km Grid (km + grid)
Selected AbstractsA new method of vegetation,climate classification in ChinaINTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 9 2008Sun Yanling Abstract Coefficient C is a synthetic index from the third correlative equation, which represents the state of moisture in a region and may be used for assigning vegetation zonality. The third correlative equation is a new equation concerning heat and water balance from knowledge of evaporation on land. In this article, coefficient C and accumulated temperature over 5 °C (AT5) are combined to predict the distribution of vegetation zones in China. Predictions of vegetation distribution are made using observational climate data interpolated into a 25 × 25 km grid. The overall impression from examining the resulting vegetation map is that the location and distribution of vegetation zones in China are predicted fairly well. Comparison between the predicted vegetation map and the vegetation regionalization map are based on Kappa statistics and indicate very good agreement for the cold,temperate coniferous forest zone, the subtropical evergreen broadleaved forest zone, and the temperate mixed coniferous,broadleaved forest zone. Agreement is good for the warm,temperate deciduous broadleaved forest zone, the temperate steppe zone, the temperate desert zone, and the Tibetan high-cold plateau zone. Agreement between the regionalization map and the produced map is fair for the tropical rainforest and monsoon forest zone. Compared with those produced by the Holdridge, Thornthwaite, Penman, and the Kira models, as well as the Budyko method, the Kappa statistics in this article are all better except for the cold,temperate (boreal) coniferous forest zone and the temperate desert zone. The results are particularly superior for the Tibetan high-cold plateau zone. Coefficient C provides important information for predicting the distribution of vegetation zones in China, and this article attempts to study vegetation,climate classification on a large scale using coefficient C and AT5. Copyright © 2007 Royal Meteorological Society [source] IMPACTS OF CLIMATE CHANGE ON MISSOURI RWER BASIN WATER YIELD,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 5 2001Mark C. Stone ABSTRACT: Water from the Missouri River Basin is used for multiple purposes. The climatic change of doubling the atmospheric carbon dioxide may produce dramatic water yield changes across the basin. Estimated changes in basin water yield from doubled CO2 climate were simulated using a Regional Climate Model (RegCM) and a physically based rainfall-runoff model. RegCM output from a five-year, equilibrium climate simulation at twice present CO2 levels was compared to a similar present-day climate run to extract monthly changes in meteorologic variables needed by the hydrologic model. These changes, simulated on a 50-km grid, were matched at a commensurate scale to the 310 subbasin in the rainfall-runoff model climate change impact analysis. The Soil and Water Assessment Tool (SWAT) rainfall-runoff model was used in this study. The climate changes were applied to the 1965 to 1989 historic period. Overall water yield at the mouth of the Basin decreased by 10 to 20 percent during spring and summer months, but increased during fall and winter. Yields generally decreased in the southern portions of the basin but increased in the northern reaches. Northern subbasin yields increased up to 80 percent: equivalent to 1.3 cm of runoff on an annual basis. [source] A spatial model for the needle losses of pine-trees in the forests of Baden-Württemberg: an application of Bayesian structured additive regressionJOURNAL OF THE ROYAL STATISTICAL SOCIETY: SERIES C (APPLIED STATISTICS), Issue 1 2007Nicole H. Augustin Summary., The data that are analysed are from a monitoring survey which was carried out in 1994 in the forests of Baden-Württemberg, a federal state in the south-western region of Germany. The survey is part of a large monitoring scheme that has been carried out since the 1980s at different spatial and temporal resolutions to observe the increase in forest damage. One indicator for tree vitality is tree defoliation, which is mainly caused by intrinsic factors, age and stand conditions, but also by biotic (e.g. insects) and abiotic stresses (e.g. industrial emissions). In the survey, needle loss of pine-trees and many potential covariates are recorded at about 580 grid points of a 4 km × 4 km grid. The aim is to identify a set of predictors for needle loss and to investigate the relationships between the needle loss and the predictors. The response variable needle loss is recorded as a percentage in 5% steps estimated by eye using binoculars and categorized into healthy trees (10% or less), intermediate trees (10,25%) and damaged trees (25% or more). We use a Bayesian cumulative threshold model with non-linear functions of continuous variables and a random effect for spatial heterogeneity. For both the non-linear functions and the spatial random effect we use Bayesian versions of P -splines as priors. Our method is novel in that it deals with several non-standard data requirements: the ordinal response variable (the categorized version of needle loss), non-linear effects of covariates, spatial heterogeneity and prediction with missing covariates. The model is a special case of models with a geoadditive or more generally structured additive predictor. Inference can be based on Markov chain Monte Carlo techniques or mixed model technology. [source] Soil state and surface hydrology diagnosis based on MOSES in the Met Office Nimrod nowcasting systemMETEOROLOGICAL APPLICATIONS, Issue 2 2006R. N. B. Smith Abstract A system has been developed and made operational at the Met Office for the real-time diagnosis of soil state and surface hydrology. It is based on the Met Office Surface Exchanges Scheme (MOSES) modified to take account of unresolved soil and topographic heterogeneity when calculating surface runoff by incorporating a Probability Distributed Moisture (PDM) scheme developed by the Centre for Ecology and Hydrology. The implementation of MOSES-PDM in the Met Office's Nimrod nowcasting system is described. High resolution soil characteristics and land cover data, together with Nimrod's analyses of precipitation amount and type, cloud cover and near-surface atmospheric variables are used to drive MOSES-PDM. Hourly values of snowmelt, runoff, net surface radiation, evaporation, potential evaporation, soil temperature, soil moisture and soil moisture deficit are calculated on a 5 km grid. Copyright © 2006 Royal Meteorological Society. [source] Multi-sensor synthesis of the mesoscale structure of a cold-air comma cloud systemMETEOROLOGICAL APPLICATIONS, Issue 2 2002K A Browning A multiscale study of a cold-air comma cloud that produced an area of heavy rain and locally severe weather has been undertaken by synthesising data from a research microwave Doppler radar and VHF and UHF Doppler wind profilers, along with routinely available radar-network, satellite, in situ and mesoscale-model data. The rain area was generated in the exit region of an upper-level jet characterised by laminated velocity perturbations. Some of the perturbations were attributable to inertia-gravity wave activity. The rain area itself is shown to have been composed of a well-organised set of mesoscale rainbands each being due to a mixture of upright and slantwise convection. The existence of the multiple rainbands may have been related to the multi-layered atmospheric structure upwind. Each of the rainbands had cold-frontal and warm-frontal portions, so as to form a series of mini warm sectors stacked along the axis of the comma cloud at roughly 70 km intervals. The multiple rainbands were accompanied by multiple fingers of overrunning low-,w air from part of a dry intrusion originating from just below a major tropopause fold. The fold contained an intense potential-vorticity maximum which appeared to be the focus of the overall system. The operational mesoscale version of the Met. Office's Unified Model, with its 12 km grid, is shown to have resolved many but not all of the key features of the rainbands. It is suggested that further improvements in very-short-range forecasting of important local detail could be achieved by further increasing its resolution and assimilating more mesoscale observational data. Copyright © 2002 Royal Meteorological Society [source] Can 4D-Var use dynamical information from targeted observations of a baroclinic structure?THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 651 2010E. A. Irvine Abstract Targeted observations are generally taken in regions of high baroclinicity, but often show little impact. One plausible explanation is that important dynamical information, such as upshear tilt, is not extracted from the targeted observations by the data assimilation scheme and used to correct initial condition error. This is investigated by generating pseudo targeted observations which contain a singular vector (SV) structure that is not present in the background field or routine observations, i.e. assuming that the background has an initial condition error with tilted growing structure. Experiments were performed for a single case-study with varying numbers of pseudo targeted observations. These were assimilated by the Met Office four-dimensional variational (4D-Var) data assimilation scheme, which uses a 6 h window for observations and background-error covariances calculated using the National Meteorological Centre (NMC) method. The forecasts were run using the operational Met Office Unified Model on a 24 km grid. The results presented clearly demonstrate that a 6 h window 4D-Var system is capable of extracting baroclinic information from a limited set of observations and using it to correct initial condition error. To capture the SV structure well (projection of 0.72 in total energy), 50 sondes over an area of 1×106 km2 were required. When the SV was represented by only eight sondes along an example targeting flight track covering a smaller area, the projection onto the SV structure was lower; the resulting forecast perturbations showed an SV structure with increased tilt and reduced initial energy. The total energy contained in the perturbations decreased as the SV structure was less well described by the set of observations (i.e. as fewer pseudo observations were assimilated). The assimilated perturbation had lower energy than the SV unless the pseudo observations were assimilated with the dropsonde observation errors halved from operational values. Copyright © 2010 Royal Meteorological Society [source] Fine scale spatial pattern of Pacific sardine (Sardinops sagax) and northern anchovy (Engraulis mordax) eggsFISHERIES OCEANOGRAPHY, Issue 4 2004K. Alexandra Curtis Abstract Pacific sardine (Sardinops sagax) and northern anchovy (Engraulis mordax) eggs exhibited different spatial structure on the scale of 0.75,2.5 km in two egg patches sampled in the Southern California Bight in April 2000. Plankton samples were collected at 4-min intervals with a Continuous Underway Fish Egg Sampler (CUFES) on 5 × 5 km grids centered on surface drifters. Variograms were calculated for sardine and anchovy eggs in Lagrangian coordinates, using abundances of individual developmental stages grouped into daily cohorts. Model variograms for sardine eggs have a low nugget effect, about 10% of the total variance, indicating high autocorrelation between adjacent samples. In contrast, model variograms for anchovy eggs have a high nugget effect of 50,100%, indicating that most of the variance at the scales sampled is spatially unstructured. The difference between observed spatial patterns of sardine and anchovy eggs on this scale may reflect the behavior of the spawning adults: larger, faster, more abundant fish may organize into larger schools with greater structure and mobility that create smoother egg distributions. Size and mobility vary with population size in clupeoids. The current high abundance of sardines and low abundance of anchovy off California agree with the greater autocorrelation of sardine egg samples and the observed tendency for locations of anchovy spawning to be more persistent on the temporal scale of days to weeks. Thus the spatial pattern of eggs and the persistence of spawning areas are suggested to depend on species, population size and age structure, spawning intensity and characteristic physical scales of the spawning habitat. [source] Total serum IgE levels are associated with ambient ozone concentration in asthmatic adultsALLERGY, Issue 1 2009E. Rage Background:, Effects of air pollution exposure on IgE-mediated response in asthmatics are poorly investigated. The aim was to examine the relationship between air pollution concentrations and total IgE levels in adult asthmatics. Methods:, The present study relates to the 369 asthmatic adults from the French Epidemiological study on Genetics and Environment of Asthma (EGEA), with availability of data on both total serum IgE measurements and air pollution concentrations. Geo-statistical models were performed on 4 × 4 km grids to assess individual outdoor air pollution exposure. Annual outdoor concentrations of ozone (O3), nitrogen dioxide (NO2), sulphur dioxide (SO2), and particulate matter smaller than 10 ,m size (PM10), and concentrations of summer ozone were assigned to subject's home address. Results:, The geometric mean of total IgE was 161 IU/ml and the average of O3 exposure was 44.9 ± 9.5 ,g/m3. Ozone concentrations were positively related to total IgE levels and an increase of 10 ,g/m3 of O3 resulted in an increase of 20.4% (95% CI = 3.0,40.7) in total IgE levels. Adjustment for age, gender, smoking habits and previous life in the countryside did not change the results, and an increase of 19.1% (2.4,38.6) in total IgE was observed with O3. Negative associations observed between NO2 and total IgE levels disappeared after including O3 in the models. Neither SO2 nor PM10 were correlated with total IgE levels. Conclusions:, Results suggest that O3 or related ambient pollutants may up-regulate total IgE levels among asthmatic adults. [source] |