Home About us Contact | |||
Mg/kg Intraperitoneally (kg + intraperitoneally)
Selected AbstractsNeuroprotective effects of zonisamide target astrocyteANNALS OF NEUROLOGY, Issue 2 2010Masato Asanuma MD Objective Recent double-blind, controlled trials in Japan showed that the antiepileptic agent zonisamide (ZNS) improves the cardinal symptoms of Parkinson's disease. Glutathione (GSH) exerts antioxidative activity through quenching reactive oxygen species and dopamine quinone. GSH depletion within dopaminergic neurons impairs mitochondrial complex I activity, followed by age-dependent nigrostriatal neurodegeneration. This study examined changes in GSH and GSH synthesis-related molecules, and the neuroprotective effects of ZNS on dopaminergic neurodegeneration using 6-hydroxydopamine,injected hemiparkinsonian mice brain and cultured neurons or astrocytes. Methods and Results ZNS increased both the cell number and GSH levels in astroglial C6 cells, but not in dopaminergic neuronal CATH.a cells. Repeated injections of ZNS (30mg/kg intraperitoneally) for 14 days also significantly increased GSH levels and S100,-positive astrocytes in mouse basal ganglia. Repeated ZNS injections (30mg/kg) for 7 days in the hemiparkinsonian mice increased the expression of cystine/glutamate exchange transporter xCT in activated astrocytes, which supply cysteine to neurons for GSH synthesis. Treatment of these mice with ZNS also increased GSH levels and completely suppressed striatal levodopa,induced quinone formation. Reduction of nigrostriatal dopamine neurons in the lesioned side of hemiparkinsonian mice was significantly abrogated by repeated injections of ZNS with or without adjunctive levodopa starting 3 weeks after 6-hydroxydopamine lesioning. Interpretation These results provide new pharmacological evidence for the effects of ZNS. ZNS markedly increased GSH levels by enhancing the astroglial cystine transport system and/or astroglial proliferation via S100, production or secretion. ZNS acts as a neuroprotectant against oxidative stress and progressive dopaminergic neurodegeneration. ANN NEUROL 2010;67:239,249 [source] Magnetic Resonance Microscopy Defines Ethanol-Induced Brain Abnormalities in Prenatal Mice: Effects of Acute Insult on Gestational Day 8ALCOHOLISM, Issue 6 2009Scott E. Parnell Background:, Magnetic resonance microscopy (MRM), magnetic resonance imaging (MRI) at microscopic levels, provides unprecedented opportunities to aid in defining the full spectrum of ethanol's insult to the developing brain. This is the first in a series of reports that, collectively, will provide an MRM-based atlas of developmental stage-dependent structural brain abnormalities in a Fetal Alcohol Spectrum Disorders (FASD) mouse model. The ethanol exposure time and developmental stage examined for this report is gestational day (GD) 8 in mice, when the embryos are at early neurulation stages; stages present in humans early in the fourth week postfertilization. Methods:, For this study, pregnant C57Bl/6J mice were administered an ethanol dosage of 2.8 g/kg intraperitoneally at 8 days, 0 hour and again at 8 days, 4 hours postfertilization. On GD 17, fetuses that were selected for MRM analyses were immersion fixed in a Bouin's/Prohance® solution. Control fetuses from vehicle-treated dams were stage-matched to those that were ethanol-exposed. The fetal mice were scanned ex vivo at 7.0 T and 512 × 512 × 1024 image arrays were acquired using 3-D spin warp encoding. The resulting 29 ,m (isotropic) resolution images were processed using ITK-SNAP, a 3-D segmentation/visualization tool. Linear and volume measurements were determined for selected brain, head, and body regions of each specimen. Comparisons were made between control and treated fetuses, with an emphasis on determining (dis)proportionate changes in specific brain regions. Results:, As compared with controls, the crown-rump lengths of stage-matched ethanol-exposed GD 17 fetuses were significantly reduced, as were brain and whole body volumes. Volume reductions were notable in every brain region examined, with the exception of the pituitary and septal region, and were accompanied by increased ventricular volumes. Disproportionate regional brain volume reductions were most marked on the right side and were significant for the olfactory bulb, hippocampus, and cerebellum; the latter being the most severely affected. Additionally, the septal region and the pituitary were disproportionately large. Linear measures were consistent with those of volume. Other dysmorphologic features noted in the MR scans were choanal stenosis and optic nerve coloboma. Conclusions:, This study demonstrates that exposure to ethanol occurring in mice at stages corresponding to the human fourth week postfertilization results in structural brain abnormalities that are readily identifiable at fetal stages of development. In addition to illustrating the utility of MR microscopy for analysis of an FASD mouse model, this work provides new information that confirms and extends human clinical observations. It also provides a framework for comparison of structural brain abnormalities resulting from ethanol exposure at other developmental stages and dosages. [source] Ethanol-induced elevation of 3,-hydroxy-5,-pregnan-20-one does not modulate motor incoordination in ratsALCOHOLISM, Issue 8 2004Rahul T. Khisti Background: Ethanol administration elevates the levels of GABAergic neuroactive steroids in brain and contributes to some of its behavioral actions. In the present study, we investigated whether such elevation of GABAergic neuroactive steroids contributes to the motor incoordinating effects of ethanol. Methods: Sprague-Dawley rats were administered ethanol (2 g/kg intraperitoneally) or saline, and the level of 3,-hydroxy-5,-pregnan-20-one (3,,5,-THP) was measured across time in cerebral cortex and in various brain regions at the peak time by radioimmunoassay. To study whether increases in GABAergic neuroactive steroids are responsible for the motor incoordinating actions of ethanol, rats were subjected to chemical (5,-reductase inhibitor, finasteride) and surgical (adrenalectomy) manipulations before receiving ethanol (2 g/kg intraperitoneally) injections. The rats were then subjected to different paradigms to evaluate motor impairment including the Majchrowicz motor intoxication rating scale, Rotarod test, and aerial righting reflex task at different time points. Results: The radioimmunoassay of 3,,5,-THP in different brain regions showed that ethanol increases 3,,5,-THP levels by 3- and 9-fold in cerebral cortex and hippocampus, respectively. There was no change in 3,,5,-THP levels in cerebellum and midbrain. The time course of 3,,5,-THP elevations in the cerebral cortex showed significant increases 20-min after ethanol injection with a peak at 60 min. In contrast, motor toxicity peaked between 5 and 10 min after ethanol injections and gradually decreased over time. Furthermore, adrenalectomy or pretreatment with finasteride (2 × 50 mg/kg, subcutaneously) did not reduce motor incoordinating effects of ethanol as assessed by the Majchrowicz intoxication rating score, Rotarod test, or aerial righting reflex task. Conclusions: Ethanol increases GABAergic neuroactive steroids in a time- and brain region-selective manner. The role of neuroactive steroids in alcohol action is specific for certain behaviors. Alcohol-induced deficits in motor coordination are not mediated by elevated neuroactive steroid biosynthesis. [source] Differential Increase in Taurine Levels by Low-Dose Ethanol in the Dorsal and Ventral Striatum Revealed by Microdialysis With On-Line Capillary ElectrophoresisALCOHOLISM, Issue 7 2004A Smith Ethanol increases taurine efflux in the nucleus accumbens or ventral striatum (VS), a dopaminergic terminal region involved in positive reinforcement. However, this has been found only at ethanol doses above 1 g/kg intraperitoneally, which is higher than what most rats will self-administer. We used a sensitive on-line assay of microdialysate content to test whether lower doses of ethanol selectively increase taurine efflux in VS as opposed to other dopaminergic regions not involved in reinforcement (e.g., dorsal striatum; DS). Adult male rats with microdialysis probes in VS or DS were injected with ethanol (0, 0.5, 1, and 2 g/kg intraperitoneally), and the amino acid content of the dialysate was measured every 11 sec using capillary electrophoresis and laser-induced fluorescence detection. In VS, 0.5 g/kg ethanol significantly increased taurine levels by 20% for 10 min. A similar increase was seen after 1 g/kg ethanol, which lasted for about 20 min after injection. A two-phased taurine efflux was observed with the 2.0 g/kg dose, where taurine was increased by 2-fold after 5 min but it remained elevated by 30% for at least 60 min. In contrast, DS exhibited much smaller dose-related increases in taurine. Glycine, glutamate, serine, and ,-aminobutyric acid were not systematically affected by lower doses of ethanol; however, 2 g/kg slowly decreased these amino acids in both brain regions during the hour after injection. These data implicate a possible role of taurine in the mechanism of action of ethanol in the VS. The high sensitivity and time resolution afforded by capillary electrophoresis and laser-induced fluorescence detection will be useful for detecting subtle changes of neuronally active amino acids levels due to low doses of ethanol. [source] Disruption of Maternal Behavior by Alcohol Intoxication in the Lactating Rat: A Behavioral and Metabolic AnalysisALCOHOLISM, Issue 8 2002Marta Yanina Pepino Background Preweanling rats exhibit clear behavioral signs of distress after interacting with an alcohol-intoxicated dam. Interestingly, behavioral reactivity of infants to the experience of alcohol in the nursing context decreases as a function of repeated alcohol administrations to the mother. In this study, maternal activities were examined when dams were exposed to repeated administrations of a subnarcoleptic alcohol dose. Maternal changes in alcohol metabolism were also analyzed as a function of repeated exposures to the drug. Methods During postpartum days 3, 5, 7, 9, 11, and 13, nursing dams received an intragastric administration of either 2.5 g/kg of alcohol or water. Maternal behaviors were evaluated (experiment 1). Blood alcohol levels (BALs) of the dams were determined on postpartum day 16 after all mothers received either an intragastric (experiment 2) or an intraperitoneal (experiment 3) dose of alcohol. The doses used (2.5 g/kg intragastrically and 1.5 g/kg intraperitoneally) were chosen because they promote similar peak BALs in dams naive to alcohol. Results Maternal behaviors were strongly affected by the state of intoxication. Nevertheless, these disruptions clearly subsided with progression of alcohol-related experiences (experiment 1). Chromatographic analysis of alcohol metabolism indicated the development of tolerance in dams that had prior experience with alcohol (experiment 2). Changes in BALs as a function of prior experience with alcohol seemed related to first-pass alcohol metabolism rather than hepatic oxidative processes of the drug (experiments 2 and 3). Conclusions When the dam first experiences a moderate state of alcohol intoxication, maternal behaviors are uniformly disrupted. Subsequent exposures to alcohol lead to maternal metabolic tolerance. In conjunction with previous studies, these data indicate that infantile reactivity to alcohol is dependent on how the members of the dam/pup dyad express or perceive ethanol's postabsorptive effects. [source] Role of Acetaldehyde in the Discriminative Stimulus Effects of EthanolALCOHOLISM, Issue 6 2002Etienne Quertemont Background: Acetaldehyde has been suggested to mediate some of the effects of ethanol. Acetaldehyde can be produced by the enzyme catalase within the brain after ethanol administration. The catalase inhibitor 3-amino-1,2,4-triazole (AT) reduces the production of acetaldehyde, and AT administration can reduce a number of ethanol-induced behavioral effects; this suggests the involvement of acetaldehyde in these behaviors. However, a role for acetaldehyde in mediating the discriminative stimulus effects of ethanol remains unclear. Methods: The contribution of acetaldehyde to the discriminative stimulus effects of ethanol was investigated by use of a two-lever drug discrimination paradigm with food reinforcement. Male Long-Evans rats were trained to discriminate water from either 1.0 or 2.0 g/kg ethanol. Stimulus substitution tests were conducted with ethanol (0,2.5 g/kg by gavage) and acetaldehyde (0,300 mg/kg intraperitoneally). A cumulative dose-response procedure was then used to investigate the effects of pretreatments with AT (0.5 and 1.0 g/kg intraperitoneally) on ethanol discrimination. Results: Acetaldehyde up to doses that decreased response rates (300 mg/kg) did not substitute for the discriminative stimulus effects of 1.0 or 2.0 g/kg ethanol. In addition, AT pretreatment did not affect the dose-response curves for ethanol discrimination. Conclusions: These results show that exogenous acetaldehyde administration does not produce discriminative stimulus effects that are similar to those of ethanol. Also, pretreatment with the catalase inhibitor did not affect the dose-response curve for ethanol discrimination, and this suggests that endogenously produced acetaldehyde does not contribute to the discriminative stimulus effects of ethanol. Together these results suggest that acetaldehyde does not mediate the discriminative stimulus effects of 1.0 to 2.0 g/kg ethanol. [source] Genetic Correlations Between Initial Sensitivity to Ethanol and Brain cAMP Signaling in Inbred and Selectively Bred MiceALCOHOLISM, Issue 6 2001Shelli L. Kirstein Background: Several lines of evidence have suggested a role for cAMP (adenosine 3,,5,-cyclic monophosphate) signaling in the acute and chronic effects of ethanol. This study investigated whether there is a genetic correlation between cAMP synthesis in the brain and the acute effects of ethanol [alcohol sensitivity or acute functional tolerance (AFT)]. Methods: By using nine inbred strains of mice, we measured initial sensitivity and AFT to ethanol with a test of balance on a dowel. Initial sensitivity was defined by the blood ethanol concentration (BEC0) at the loss of balance on a dowel after an ethanol injection [1.75 g/kg intraperitoneally (ip)]. When mice were able to regain balance on the dowel, BEC1 was determined, and a second ethanol injection was given (2 g/kg ip). Upon final regaining of balance, BEC2 was determined. AFT was defined by the difference between BEC1 and BEC2 (AFT =,BEC = BEC2, BEC1). Cyclic AMP synthesis was measured in whole-cell preparations in the cerebellum and other brain areas of mice of the nine inbred strains. Results: Significant differences in BEC0 and AFT were seen among the mice of the nine inbred strains. Cerebellar basal and forskolin- and isoproterenol-stimulated cAMP production differed significantly between the strains, and BEC0 was found to correlate significantly with forskolin- and isoproterenol-stimulated cAMP accumulation in the cerebellum (r= 0.70 and 0.94, respectively). When we measured cAMP production in mesencephalic and telencephalic tissue in three strains of mice that differed significantly in isoproterenol-stimulated cAMP accumulation in the cerebellum, significant differences between strains were found only in telencephalic tissue. The relative relationship between the rank order of the three strains for cAMP accumulation in the telencephalon and initial sensitivity to ethanol was identical to that seen with the cerebellum. However, AFT did not correlate with cAMP accumulation in the cerebellum or any other brain area tested. Conclusions: These results suggest that cAMP-generating systems of the cerebellum and possibly the brain areas contained in telencephalic tissues (e.g., basal ganglia) may have an important relationship to an animal's initial sensitivity to the incoordinating effects of ethanol. [source] Binge Pattern Ethanol Exposure in Adolescent and Adult Rats: Differential Impact on Subsequent Responsiveness to EthanolALCOHOLISM, Issue 8 2000Aaron M. White Background: Recent evidence indicates that adolescent animals are more sensitive than adults to the disruptive effects of acute ethanol exposure on spatial learning. It is not yet known whether adolescent animals are also more sensitive than adults to the enduring neurobehavioral effects of repeated ethanol exposure. In this study, animals were exposed to ethanol in a binge-pattern during either adolescence or adulthood. At a time when all subjects were adults, spatial working memory was examined in the absence and presence of an acute ethanol challenge. Methods: Rats were exposed to ethanol (5.0 g/kg intraperitoneally) or isovolumetric saline at 48 hr intervals over 20 days. Exposure began on either postnatal day 30 (adolescent group) or 70 (adult group). Twenty days after the final injection, a time at which all animals were adults, the subjects were tested on an elevated plus maze and then were trained to perform a spatial working memory task on an eight-arm radial maze. At the beginning of each session of training on the working memory task, subjects retrieved food rewards on four of the eight arms. After a delay, subjects were placed on the maze and allowed to retrieve food from the remaining four arms. Results: Prior exposure to ethanol did not influence behavior on the plus maze. Performance of the groups did not differ during acquisition of the spatial working memory task with a 5 min delay or during subsequent testing with a 1 hr delay. However, animals treated with ethanol during adolescence exhibited larger working memory impairments during an ethanol challenge (1.5 g/kg intraperitoneally) than subjects in the other three groups. Conclusions: The findings indicate that binge pattern exposure to ethanol during adolescence enhances responsiveness to the memory-impairing effects of ethanol in adulthood. [source] Neurovascular and neuronal protection by E64d after focal cerebral ischemia in ratsJOURNAL OF NEUROSCIENCE RESEARCH, Issue 4 2006Tamiji Tsubokawa Abstract Calpains and cathepsins are two families of proteases that play an important role in ischemic cell death. In this study, we investigated the effect of E64d, a ,-calpain and cathepsin B inhibitor, in the prevention of neuronal and endothelial apoptotic cell death after focal cerebral ischemia in rats. Rats underwent 2 hr of transient focal ischemia from middle cerebral artery occlusion (MCAO) and were sacrificed 24 hr later. E64d (5 mg/ kg intraperitoneally) was administered 30 min before MCAO. Assessment included neurological function, infarction volume, brain water content, blood,brain barrier permeability, histology, and immunohistochemistry. The E64d-treated rats had significant brain protection against ischemic damage. We observed a reduction of infarction volume, brain edema, and improved neurological scores in E64d-treated rats compared with the nontreated control. Furthermore, there was a remarkable reduction in both proteases and caspase-3 activation and apoptotic changes in both neurons and endothelial cells in E64d-treated rats. These results suggest that E64d protects the brain against ischemic/reperfusion injury by attenuating neuronal and endothelial apoptosis. © 2006 Wiley-Liss, Inc. [source] In Vivo RANK Signaling Blockade Using the Receptor Activator of NF-,B:Fc Effectively Prevents and Ameliorates Wear Debris-Induced Osteolysis via Osteoclast Depletion Without Inhibiting OsteogenesisJOURNAL OF BONE AND MINERAL RESEARCH, Issue 2 2002Lisa M. Childs Abstract Prosthesis failure due to wear debris-induced osteolysis remains a major clinical problem and the greatest limitation for total joint arthroplasty. Based on our knowledge of osteoclast involvement in this process and the requirements of receptor activator of NF-,B (RANK) signaling in osteoclastogenesis and bone resorption, we investigated the efficacy of RANK blockade in preventing and ameliorating titanium (Ti)-induced osteolysis in a mouse calvaria model. Compared with placebo controls we found that all doses of RANK:Fc above 1 mg/kg intraperitoneally (ip) per 48 h significantly inhibited osteoclastogenesis and bone resorption in response to Ti implanted locally. Complete inhibition occurred at 10 mg/kg ip per 48 h, yielding results that were statistically equivalent to data obtained with Ti-treated RANK,/, mice. We also evaluated the effects of a single injection of RANK:Fc on day 5 on established osteolysis and found that Ti-treated were still depleted for multinucleated tartrate-resistant acid phosphatase-positive (TRAP+) cells 16 days later. More importantly, this osteoclast depletion did not affect bone formation because the bone lost from the osteolysis on day 5 was restored by day 21. An assessment of the quantity and quality of the newly formed bone in these calvariae by calcein labeling and infrared (IR) microscopy, respectively, showed no significant negative effect of RANK:Fc treatment. These studies indicate that osteoclast depletion via RANK blockade is an effective method to prevent and reverse wear debris-induced osteolysis without jeopardizing osteogenesis. [source] Antinociceptive efficacy of levetiracetam in a mice model for painful diabetic neuropathyACTA ANAESTHESIOLOGICA SCANDINAVICA, Issue 7 2008M. OZCAN Background and Objective: Despite important advances in available knowledge, management of neuropathic pain remains incomplete, and results from experimental and clinical studies indicate that some anticonvulsants show promise for treating neuropathic pain. The aim of this study was to assess the antinociceptive efficacy of levetiracetam (LEV, ucb L059) in a mice model for painful diabetic neuropathy using the in vivo nociceptive behavioral ,hot-plate test.' Methods: The hot-plate test consisted of placing individual mice (adult male Balb/C) on the hot plate at 50±0.1 °C and timing the delay for the first hind paw lift (nociceptive threshold). After obtaining control values, diabetes was induced by injection of streptozotocin [200 mg/kg intraperitoneally (i.p.)] and 2 weeks after induction of diabetes (serum glucose ,400 mg/dL) LEV was administered i.p. and hot-plate tests were repeated. Pain threshold values were determined and analyzed by Kruskal,Wallis one-way analysis of variance (ANOVA) followed by a pairwise comparison using a Dunnett's t -test on the ranked data. Results: LEV (60, 300 and 900 mg/kg) had no significant effect on the nociceptive threshold in normal mice (n=8 for each dose, P>0.05). There were significant decreases in pain threshold latency in diabetic mice compared with the normal healthy group and these were significantly and dose-dependently restored by much lower doses of LEV (20, 100 and 200 mg/kg) in a reversible manner. Conclusion: Results obtained from the in vivo behavioral test lend support to the validation of the promising therapeutic potential of the novel antiepileptic agent LEV in the treatment of neuropathic pain. [source] Endogenous melatonin protects L -DOPA from autoxidation in the striatal extracellular compartment of the freely moving rat: potential implication for long-term L -DOPA therapy in Parkinson's diseaseJOURNAL OF PINEAL RESEARCH, Issue 3 2006Gaia Rocchitta Abstract:, We previously showed, using microdialysis, that autoxidation of exogenous L-dihydroxyphenylalanine (l -DOPA) occurs in vivo in the extracellular compartment of the freely moving rat, with a consequent formation of l -DOPA semiquinone (l -DOPA-SQ). In the present study, intrastriatal infusion of l -DOPA (1.0 ,m for 200 min) increased dialysate l -DOPA concentrations (maximum increases up to 116-fold baseline values); moreover, l -DOPA-SQ was detected in dialysates. Individual dialysate concentrations of l -DOPA were negatively correlated with those of l -DOPA-SQ. Co-infusion of N -acetylcysteine (100 ,m) or melatonin (50 ,m) increased l -DOPA (up to 151- and 246-fold, respectively) and decreased l -DOPA-SQ (by about 53% and 87%, respectively) dialysate concentrations. Systemic l -DOPA [25 mg/kg intraperitoneally (i.p.) twice in a 12-h interval] significantly increased striatal baseline dialysate concentrations of l -DOPA and decreased dopamine (DA) and ascorbic acid (AsAc) concentrations, when compared with controls. Following systemic l -DOPA, l -DOPA-SQ was detected in dialysates. Endogenous melatonin was depleted in rats maintained on a 24-h light cycle for 1 wk. In melatonin-depleted rats, systemic l -DOPA induced a smaller increase in dialysate l -DOPA, a greater increase in l -DOPA-SQ formation, and a greater reduction in DA and AsAc dialysate concentrations. Co-administration of melatonin (5.0 mg/kg, i.p., twice in a 12-h interval) with l -DOPA, in control as well as in light-exposed rats, significantly increased dialysate l -DOPA concentrations, greatly inhibited l -DOPA-SQ formation, and restored up to the control values dialysate DA and AsAc concentrations. These findings demonstrate that endogenous melatonin protects exogenous l -DOPA from autoxidation in the extracellular compartment of the striatum of freely moving rats; moreover, systemic co-administration of melatonin with l -DOPA markedly increases striatal l -DOPA bioavailability in control as well as in melatonin-depleted rats. These results may be of relevance to the long-term l -DOPA therapy of Parkinson's disease. [source] Nitric Oxide Synthesis Inhibition Attenuates Conditioned Reinstatement of Ethanol-Seeking, but Not the Primary Reinforcing Effects of EthanolALCOHOLISM, Issue 8 2004Xiu Liu Background: Nitric oxide (NO) signaling has been implicated in regulating aspects of the reinforcing and addictive actions of cocaine. These experiments were designed to examine whether NO-dependent neurotransmission also participates in mediating the addictive actions of another drug of abuse, ethanol, with emphasis on both the primary reinforcing effects of ethanol and the incentive motivational effects of ethanol-related contextual stimuli. Methods: Male Wistar rats were operantly trained to orally self-administer 10% (w/v) ethanol in daily 30-min sessions and to associate distinct discriminative stimuli with the availability of ethanol (S+) versus nonreward (S,). Rats were treated with the NO synthase inhibitor NG -nitro-l-arginine methyl ester (l-NAME; 0, 10, or 40 mg/kg intraperitoneally) 30 min before self-administration tests that were conducted after establishment of stable levels of daily ethanol intake and conditioned reinstatement tests that were performed after extinction of ethanol-maintained operant responding. Results: l-NAME did not alter the primary reinforcing effects of ethanol in self-administration tests. In contrast, l-NAME dose-dependently attenuated the recovery of extinguished responding induced by the ethanol S+ in the absence of ethanol availability during reinstatement tests. Conclusions: These results suggest that the NO system does not play a role in behavior reinforced directly by ethanol. However, the results implicate NO-dependent neurotransmission in alcohol-seeking responses elicited by drug-related contextual stimuli. [source] Role of Acetaldehyde in the Discriminative Stimulus Effects of EthanolALCOHOLISM, Issue 6 2002Etienne Quertemont Background: Acetaldehyde has been suggested to mediate some of the effects of ethanol. Acetaldehyde can be produced by the enzyme catalase within the brain after ethanol administration. The catalase inhibitor 3-amino-1,2,4-triazole (AT) reduces the production of acetaldehyde, and AT administration can reduce a number of ethanol-induced behavioral effects; this suggests the involvement of acetaldehyde in these behaviors. However, a role for acetaldehyde in mediating the discriminative stimulus effects of ethanol remains unclear. Methods: The contribution of acetaldehyde to the discriminative stimulus effects of ethanol was investigated by use of a two-lever drug discrimination paradigm with food reinforcement. Male Long-Evans rats were trained to discriminate water from either 1.0 or 2.0 g/kg ethanol. Stimulus substitution tests were conducted with ethanol (0,2.5 g/kg by gavage) and acetaldehyde (0,300 mg/kg intraperitoneally). A cumulative dose-response procedure was then used to investigate the effects of pretreatments with AT (0.5 and 1.0 g/kg intraperitoneally) on ethanol discrimination. Results: Acetaldehyde up to doses that decreased response rates (300 mg/kg) did not substitute for the discriminative stimulus effects of 1.0 or 2.0 g/kg ethanol. In addition, AT pretreatment did not affect the dose-response curves for ethanol discrimination. Conclusions: These results show that exogenous acetaldehyde administration does not produce discriminative stimulus effects that are similar to those of ethanol. Also, pretreatment with the catalase inhibitor did not affect the dose-response curve for ethanol discrimination, and this suggests that endogenously produced acetaldehyde does not contribute to the discriminative stimulus effects of ethanol. Together these results suggest that acetaldehyde does not mediate the discriminative stimulus effects of 1.0 to 2.0 g/kg ethanol. [source] Adenosine A2A or A3 receptors are required for inhibition of inflammation by methotrexate and its analog MX-68ARTHRITIS & RHEUMATISM, Issue 1 2003M. Carmen Montesinos Objective Low-dose weekly methotrexate therapy remains a mainstay in the treatment of inflammatory arthritis. Results of previous studies demonstrated that adenosine, acting at one or more of its receptors, mediates the antiinflammatory effects of methotrexate in animal models of both acute and chronic inflammation. We therefore sought to establish which receptor(s) is involved in the modulation of acute inflammation by methotrexate and its nonpolyglutamated analog MX-68 (N -[[4-[(2,4-diaminopteridin-6-yl)methyl]-3,4-dihydro-2H -1,4-benzothiazin-7-yl]-carbonyl]- L -homoglutamic acid). Methods We studied the effects of low-dose methotrexate (0.75 mg/kg intraperitoneally [IP] every week for 5 weeks), MX-68 (2 mg/kg IP 2 days and 1 hour before induction of inflammation), dexamethasone (1.5 mg/kg IP 1 hour before induction of inflammation), or vehicle control on acute inflammation in an air-pouch model in A2A and A3 receptor knockout mice. Results Low-dose weekly methotrexate treatment increased the adenosine concentration in the exudates of all mice studied and reduced leukocyte and tumor necrosis factor , accumulation in the exudates of wild-type mice, but not in those of A2A or A3 receptor knockout mice. Dexamethasone, an agent that suppresses inflammation by a different mechanism, was equally effective at suppressing leukocyte accumulation in A2A knockout, A3 knockout, and wild-type mice, indicating that the lack of response was specific for methotrexate and MX-68. Conclusion These findings confirm that adenosine, acting at A2A and A3 receptors, is a potent regulator of inflammation. Moreover, these results provide strong evidence that adenosine, acting at either or both of these receptors, mediates the antiinflammatory effects of methotrexate and its analog MX-68. [source] Protective Effect of Berberine on Cyclophosphamide-Induced Haemorrhagic Cystitis in RatsBASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 5 2001Xinyun Xu Administration of 150 mg/kg cyclophosphamide intraperitoneally caused a serious haemorrhagic cystitis in rats after 12 hr, including bladder oedema, haemorrhage, and dramatic elevation of nitric oxide metabolites (nitrite+nitrate) in urine and in plasma. To explore whether cyclophosphamide-induced cystitis could be prevented by berberine, rats were pretreated with a single dose or two doses of berberine at 50, 100, or 200 mg/kg intraperitoneally then challenged with cyclophosphamide (150 mg/kg, intraperitoneally). The results indicated that pretreatment of rats with berberine could reduce cyclophosphamide-induced cystitis in a dose-dependent manner. Furthermore, we found that two doses of berberine showed greater protection against cyclophosphamide urotoxicity than when given a single dose. In addition, our data shows that a single dose of 200 mg/kg berberine, or two doses of 100, and 200 mg/kg berberine could completely block cyclophosphamide-induced bladder oedema and haemorrhage, as well as nitric oxide metabolites increase in rat urine and plasma. In conclusion, our findings suggest that berberine could be a potential effective drug in the treatment of cyclophosphamide-induced cystitis, and provides us with the bright hope in the prevention and treatment of cyclophosphamide urotoxicity. [source] Chlorpyrifos-Induced Hypothermia and Vasodilation in the Tail of the Rat: Blockade by Scopolamine,BASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 1 2000Christopher J. Gordon Organophosphate pesticides such as chlorpyrifos reduce core temperature (Tc) in laboratory rodents. The mechanism(s) responsible for the chlorpyrifos-induced hypothermia are not well known. This study assessed the role of a key effector for thermoregulation in the rat, vasomotor control of heat loss from the tail, and its possible cholinergic control during chlorpyrifos-induced hypothermia. Tc and motor activity were monitored by telemetry in female Long-Evans rats maintained at an ambient temperature (Ta) of 25°. Tail skin temperature (Tsk(t)) was measured hourly. Rats were dosed with chlorpyrifos (0 or 25 mg/kg orally). Two hr later the rats were dosed with saline or scopolamine (1.0 mg/kg intraperitoneally). Two hr after chlorpyrifos treatment there was a marked elevation in Tsk(t) concomitant with a 0.5° reduction in Tc. Scopolamine administered to control rats led to a marked elevation in Tc with little change in Tsk(t). Rats treated with chlorpyrifos and administered scopolamine underwent a marked vasoconstriction and elevation in Tc. Vasodilation of the tail is an important thermoeffector to reduce Tc during the acute stages of chlorpyrifos exposure. The blockade of the response by scopolamine suggests that the hypothermic and vasodilatory response to chlorpyrifos is mediated via a cholinergic muscarinic pathway in the CNS. [source] Dual effect of DL -homocysteine and S -adenosylhomocysteine on brain synthesis of the glutamate receptor antagonist, kynurenic acidJOURNAL OF NEUROSCIENCE RESEARCH, Issue 3 2005E. Luchowska Abstract Increased serum level of homocysteine, a sulfur-containing amino acid, is considered a risk factor in vascular disorders and in dementias. The effect of homocysteine and metabolically related compounds on brain production of kynurenic acid (KYNA), an endogenous antagonist of glutamate ionotropic receptors, was studied. In rat cortical slices, DL -homocysteine enhanced (0.1,0.5 mM) or inhibited (concentration inducing 50% inhibition [IC50] = 6.4 [5.5,7.5] mM) KYNA production. In vivo peripheral application of DL -homocysteine (1.3 mmol/kg intraperitoneally) increased KYNA content (pmol/g tissue) from 8.47 ± 1.57 to 13.04 ± 2.86 (P < 0.01; 15 min) and 11.4 ± 1.72 (P < 0.01; 60 min) in cortex, and from 4.11 ± 1.54 to 10.02 ± 3.08 (P < 0.01; 15 min) in rat hippocampus. High concentrations of DL -homocysteine (20 mM) applied via microdialysis probe decreased KYNA levels in rabbit hippocampus; this effect was antagonized partially by an antagonist of group I metabotropic glutamate receptors, LY367385. In vitro, S -adenosylhomocysteine acted similar to but more potently than DL -homocysteine, augmenting KYNA production at 0.03,0.08 mM and reducing it at ,0.5 mM. The stimulatory effect of S -adenosylhomocysteine was abolished in the presence of the L -kynurenine uptake inhibitors L -leucine and L -phenyloalanine. Neither the N -methyl- D -aspartate (NMDA) antagonist CGS 19755 nor L -glycine influenced DL -homocysteine- and S -adenosylhomocysteine-induced changes of KYNA synthesis in vitro. DL -Homocysteine inhibited the activity of both KYNA biosynthetic enzymes, kynurenine aminotransferases (KATs) I and II, whereas S -adenosylhomocysteine reduced only the activity of KAT II. L -Methionine and L -cysteine, thiol-containing compounds metabolically related to homocysteine, acted only as weak inhibitors, reducing KYNA production in vitro and inhibiting the activity of KAT II (L -cysteine) or KAT I (L -methionine). The present data suggest that DL -homocysteine biphasically modulates KYNA synthesis. This seems to result from conversion of compound to S -adenosylhomocysteine, also acting dually on KYNA formation, and in part from the direct interaction of homocysteine with metabotropic glutamate receptors and KYNA biosynthetic enzymes. It seems probable that hyperhomocystemia-associated brain dysfunction is mediated partially by changes in brain KYNA level. © 2004 Wiley-Liss, Inc. [source] |