KCNQ Channels (kcnq + channel)

Distribution by Scientific Domains


Selected Abstracts


Pathophysiology of KCNQ Channels: Neonatal Epilepsy and Progressive Deafness

EPILEPSIA, Issue 8 2000
Thomas J. Jentsch
No abstract is available for this article. [source]


Impaired M-Current and Neuronal Excitability

EPILEPSIA, Issue 2002
Motohiro Okada
Summary: ,Purpose: Benign familial neonatal convulsions (BFNC), a hereditary epilepsy, occurs specifically in newborns and remits spontaneously after this period. Several mutations of either KCNQ2 or KCNQ3, members of the KCNQ-related K+ -channel (KCNQ-channel) family, were identified as a cause of BFNC. Such mutations impair KCNQ-related M- current, an element of the inhibitory system in the central nervous system (CNS), and therefore are thought to result in neuronal hyperexcitability. Methods: To clarify the pathogenesis of BFNC, this study investigated the effects of the KCNQ channel on propagation of neuronal excitability using a 64-channel multielectrode dish (MED64) system for novel two-dimensional monitoring of evoked field potentials including fiber volley (FV) and field excitatory postsynaptic potential (fEPSP). Results: Dup996, a selective KCNQ-channel inhibitor, did not affect the amplitude of FV or fEPSP, but enhanced the FV and fEPSP propagation. The ,-aminobutyric acid (GABA)A -receptor antagonist, bicuculline, enhanced their propagation, whereas ,-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/glutamate-receptor antagonist, DNQX, reduced both amplitude and propagation of fEPSP without affecting those of FV. Under the condition of GABAA -receptor blockade by bicuculline, Dup996 enhanced the amplitude of fEPSP and propagation of FV and fEPSP without affecting the amplitude of FV. Dup996 enhanced the stimulating effects of bicuculline on the propagation and amplitude of FV and fEPSP, but it did not affect the inhibiting effects of DNQX. Conclusions: These results suggest that the occurrence of BFNC cannot be produced by KCNQ-channel dysfunction alone but by reciprocal action between impaired KCNQ channel and the other unknown. [source]


Calmodulin binding to M-type K+ channels assayed by TIRF/FRET in living cells

THE JOURNAL OF PHYSIOLOGY, Issue 9 2008
Manjot Bal
Calmodulin (CaM) binds to KCNQ2,4 channels within their carboxy termini, where it regulates channel function. The existing data have not resolved the Ca2+ dependence of the interaction between the channels and CaM. We performed glutathione S-transferase (GST)-pull-down assays between purified KCNQ2,4 carboxy termini and CaM proteins to determine the Ca2+ dependence of the interaction in vitro. The assays showed substantial Ca2+ dependence of the interaction of the channels with wild-type (WT) CaM, but not with dominant-negative (DN) CaM. To demonstrate CaM,channel interactions in individual living cells, we performed fluorescence resonance energy transfer (FRET) between ECFP-tagged KCNQ2,4 channels and EYFP-tagged CaM expressed in CHO cells, performed under total internal reflection fluorescence (TIRF) microscopy, in which excitation light only penetrates several hundred nanometres into the cell, thus isolating membrane events. FRET was assayed between the channels and either WT or DN CaM, performed under conditions of normal [Ca2+]i, low [Ca2+]i or high [Ca2+]i induced by empirically optimized bathing solutions. The FRET data suggest a strong Ca2+ dependence for the interaction between WT CaM and KCNQ2, but less so for KCNQ3 and KCNQ4. FRET between all KCNQ2,4 channels and DN CaM was robust, and not significantly Ca2+ dependent. These data show interactions between CaM and KCNQ channels in living cells, and suggest that the interactions between KCNQ2,4 channels and CaM are likely to have Ca2+ -dependent and Ca2+ -independent components. [source]


A KCNQ channel opener for experimental neonatal seizures and status epilepticus,

ANNALS OF NEUROLOGY, Issue 3 2009
YogendraSinh H. Raol PhD
Objective Neonatal seizures occur frequently, are often refractory to anticonvulsants, and are associated with considerable morbidity and mortality. Genetic and electrophysiological evidence indicates that KCNQ voltage-gated potassium channels are critical regulators of neonatal brain excitability. This study tests the hypothesis that selective openers of KCNQ channels may be effective for treatment of neonatal seizures. Methods We induced seizures in postnatal day 10 rats with either kainic acid or flurothyl. We measured seizure activity using quantified behavioral rating and electrocorticography. We compared the efficacy of flupirtine, a selective KCNQ channel opener, with phenobarbital and diazepam, two drugs in current use for neonatal seizures. Results Unlike phenobarbital or diazepam, flupirtine prevented animals from experiencing development of status epilepticus when administered before kainate. In the flurothyl model, phenobarbital and diazepam increased latency to seizure onset, but flupirtine completely prevented seizures throughout the experiment. Flupirtine was also effective in arresting electrographic and behavioral seizures when administered after animals had developed continuous kainate-induced status epilepticus. Flupirtine caused dose-related sedation and suppressed electroencephalographic activity but did not result in respiratory suppression or result in any mortality. Interpretation Flupirtine appears more effective than either of two commonly used antiepileptic drugs, phenobarbital and diazepam, in preventing and suppressing seizures in both the kainic acid and flurothyl models of symptomatic neonatal seizures. KCNQ channel openers merit further study as potential treatments for seizures in infants and children. Ann Neurol 2009;65:326,336 [source]


Differential tetraethylammonium sensitivity of KCNQ1,4 potassium channels

BRITISH JOURNAL OF PHARMACOLOGY, Issue 3 2000
J K Hadley
In Shaker -group potassium channels the presence of a tyrosine residue, just downstream of the pore signature sequence GYG, determines sensitivity to tetraethylammonium (TEA). The KCNQ family of channels has a variety of amino acid residues in the equivalent position. We studied the effect of TEA on currents generated by KCNQ homomers and heteromers expressed in CHO cells. We used wild-type KCNQ1,4 channels and heteromeric KCNQ2/3 channels incorporating either wild-type KCNQ3 subunits or a mutated KCNQ3 in which tyrosine replaced threonine at position 323 (mutant T323Y). IC50 values were (mM): KCNQ1, 5.0; KCNQ2, 0.3; KCNQ3, >30; KCNQ4, 3.0; KCNQ2+KCNQ3, 3.8; and KCNQ2+KCNQ3(T323Y), 0.5. While the high TEA sensitivity of KCNQ2 may be conferred by a tyrosine residue lacking in the other channels, the intermediate TEA sensitivity of KCNQ1 and KCNQ4 implies that other residues are also important in determining TEA block of the KCNQ channels. British Journal of Pharmacology (2000) 129, 413,415; doi:10.1038/sj.bjp.0703086 [source]