Kcat Values (kcat + value)

Distribution by Scientific Domains


Selected Abstracts


Study of in vitro glucuronidation of hydroxyquinolines with bovine liver microsomes

FUNDAMENTAL & CLINICAL PHARMACOLOGY, Issue 6 2002
Masanobu Kanou
Abstract Glucuronidation of drugs by UDP-glucuronosyltransferase (UGT) is a major phase II conjugation reaction. Defects in UGT are associated with Crigler,Najjar syndrome and Gilbert's syndrome with severe hyperbilirubinaemias and jaundice. We analysed the reactivities of some hydroxyquinoline derivatives, which are naturally produced from quinoline by cytochrome P450. The analyses were carried out using a microassay system for UGT activity in bovine liver microsomes in the range 0.5,100 pmol/assay with the highly sensitive radio-image analyser Fuji BAS2500 (Fujifilm, Tokyo, Japan). 3-Hydroxylquinoline is a good substrate for glucuronidation, and the relative Kcat values were 3.1-fold higher than the values for p-nitrophenol. 5,6-Dihydroquinoline-5,6- trans -diol gave a similar Km value to that of 3-hydroxyquinoline, but the Vmax value was approximately 1/15 of that of p-nitrophenol and showed weak reactivity. Quinoline N-oxide gave a low Vmax value and showed marginal activity. The Kcat values of 6-hydroxyquinoline and 5-hydroxyquinoline were 2.1- and 1.2-fold higher than that of p-nitrophenol, respectively. Fluoroquinoline (FQ) derivatives, such as 3FQ, 7,8diFQ and 6,7,8triFQ, did not show any substrate activities. These results suggest that there are therapeutic problems in administration of some quinoline drugs to patients with jaundice. [source]


Comparison of the specificity, stability and individual rate constants with respective activation parameters for the peptidase activity of cruzipain and its recombinant form, cruzain, from Trypanosoma cruzi

FEBS JOURNAL, Issue 24 2001
Wagner A. S. Judice
The Trypanosoma cruzi cysteine protease cruzipain contains a 130-amino-acid C-terminal extension, in addition to the catalytic domain. Natural cruzipain is a complex of isoforms, because of the simultaneous expression of several genes, and the presence of either high mannose-type, hybrid monoantennary-type or complex biantenary-type oligosacharide chains at Asn255 of the C-terminal extension. Cruzipain and its recombinant form without this extension (cruzain) were studied comparatively in this work. S2 to S2, subsite specificities of these enzymes were examined using four series of substrates derived from the internally quenched fluorescent peptide Abz-KLRFSKQ-EDDnp (Abz, ortho -aminobenzoic acid; EDDnp, N -(2,4-dinitrophenyl)-ethylenediamine). Large differences in the kinetic parameters were not observed between the enzymes; however, Km values were consistently lower for the hydrolysis of most of the substrates by cruzain. No difference in the pH,activity profile between the two enzymes was found, but in 1 m NaCl cruzipain presented a kcat value significantly higher than that of cruzain. The activation energy of denaturation for the enzymes did not differ significantly; however, a negative entropy value was observed for cruzipain denaturation whereas the value for cruzain was positive. We determined the individual rate constants (k1, substrate diffusion; k,1, substrate dissociation; k2, acylation; k3, deacylation) and the respective activation energies and entropies for hydrolysis of Abz-KLRFSKQ-EDDnp determining the temperature dependence of the Michaelis,Menten parameters kcat/Km and kcat as previously described [Ayala, Y.M. & Di Cera, E. (2000) Protein Sci.9, 1589,1593]. Differences between the two enzymes were clearly detected in the activation energies E1 and E,1, which are significantly higher for cruzipain. The corresponding ,S1 and ,S,1 were positive and significantly higher for cruzipain than for cruzain. These results indicate the presence of a larger energy barrier for cruzipain relating to substrate diffusion and dissociation, which could be related to the C-terminal extension and/or glycosylation state of cruzipain. [source]


Two conserved structural components, A-rich bulge and P4 XJ6/7 base-triples, in activating the group I ribozymes

GENES TO CELLS, Issue 12 2002
Yoshiya Ikawa
Background: The A-rich bulge of the group I intron ribozyme, a highly conserved structural element in its P5 peripheral region, plays a significant role in activating the ribozyme. The bulge has been known to interact with the P4 stem forming P4 XJ6/7 base-triples in the conserved core. The base-triples by themselves have also been identified as a distinctive element responsible for enhancing the activity of the ribozyme. Results: A weakly active variant of the Tetrahymena ribozyme lacking the P5 extension was dramatically activated by the addition of an A-rich bulge at the peripheral region, or by replacement of the original P4 XJ6/7 base-triples in the core structure with more stabilized isosteric ones. Biochemical analyses showed that the two methods of activation affect the ribozyme differently. Conclusions: The long-range interaction between the A-rich bulge and P4 or additionally stabilized P4 XJ6/7 base-triples can contribute dramatically to activation of the Tetrahymena ribozyme. Both improve the kcat value, which represents the rate of the limiting step of the ribozyme reaction when its binding site is saturated with GTP. However, the bulge or the modified base-triples gave a moderate reduction or considerable increase, respectively, to the Km(GTP) value. [source]


Effect of Polycarboxylate Blocks on the Amidase Activity of Trypsin through Complexation with PEG/Polycarboxylate Block Ionomers

MACROMOLECULAR BIOSCIENCE, Issue 3 2007
Atsushi Harada
Abstract The amidase reaction of trypsin, which is a member of the serine proteinase family, is accelerated by its complexation with block ionomers containing a polycarboxylate block, such as PEG-PAA, PEG-PGA, or PEG-PMA. PEG-PAA and PEG-PGA had similar effects, causing an increase in the kcat value and a shift in the pH profile to a lower pH region. On the other hand, PEG-PMA showed not only an increase in the kcat value, but also a decrease in the activation energy; however, there was no shift in the pH dependence of the initial reaction rate. Such differences might be induced by the difference in pKa values of the polycarboxylate block in block ionomers. [source]


Enhancement of glutaryl-7-aminocephalosporanic acid acylase activity of ,-glutamyltranspeptidase of Bacillus subtilis

BIOTECHNOLOGY JOURNAL, Issue 8 2010
Hideyuki Suzuki Professor
Abstract Semisynthetic cephalosporins, the best-selling antibiotics worldwide, are derived from 7-aminocephalosporanic acid (7-ACA). Currently, in the pharmaceutical industrie, 7-ACA is mainly produced from cephalosporin C by sequential application of D -amino acid oxidase and cephalosporin acylase. Here we study the potential of industrially amenable enzyme ,-glutamyltranspeptidase from Bacillus subtilis for 7-ACA production, since the wild-type ,-glutamyltranspeptidase of B. subtilis has inherent glutaryl-7-aminocephalosporanic acid acylase activity with a kcat value of 0.0485 s -1. Its activity has been enhanced by site directed and random mutagenesis. The kcat/Km value was increased to 3.41 s -1 mM -1 for a E423Y/E442Q/D445N mutant enzyme and the kcat value was increased to 0.508 s -1 for a D445G mutant enzyme. Consequently, the catalytic efficiency and the turnover rate were improved up to about 1000-fold and 10-fold, compared with the wildtype ,-glutamyltranspeptidase of B. subtilis. [source]


Engineered Pyranose 2-Oxidase: Efficiently Turning Sugars into Electrical Energy

ELECTROANALYSIS, Issue 7-8 2010
Oliver Spadiut
Abstract Due to the recent interest in enzymatic biofuel cells (BFCs), sugar oxidizing enzymes other than the commonly used glucose oxidase are gaining more importance as possible bioelements of implantable microscale-devices, which can, for example, be used in biosensors and pacemakers. In this study we used rational and semi-rational protein design to improve the catalytic activity of the enzyme pyranose 2-oxidase (P2Ox) with its alternative soluble electron acceptors 1,4-benzoquinone and ferricenium ion, which can serve as electron mediators, to possibly boost the power output of enzymatic BFCs. Using a screening assay based on 96-well plates, we identified the variant H450G, which showed lower KM and higher kcat values for both 1,4-benzoquinone and ferricenium ion compared to the wild-type enzyme, when either D -glucose or D -galactose were used as saturating electron donors. Besides this variant, we analyzed the variants V546C and T169G/V546C for their possible application in enzymatic BFCs. The results obtained in homogeneous solution were compared with those obtained when P2Ox was immobilized on the surface of graphite electrodes and either "wired" to an osmium redox polymer or using soluble 1,4-benzoquinone as mediator. According to the spectrophotometrically determined kinetic constants, the possible energy output, measured in flow injection analysis experiments with these variants, increased up to 4-fold compared to systems employing the wild-type enzyme. [source]


Putative reaction mechanism of heterologously expressed octopine dehydrogenase from the great scallop, Pecten maximus (L)

FEBS JOURNAL, Issue 24 2007
Andre Müller
cDNA for octopine dehydrogenase (ODH) from the adductor muscle of the great scallop, Pecten maximus, was cloned using 5,- and 3,-RACE. The cDNA comprises an ORF of 1197 nucleotides and the deduced amino acid sequence encodes a protein of 399 amino acids. ODH was heterologously expressed in Escherichia coli with a C-terminal penta His-tag. ODH,5His was purified to homogeneity using metal,chelate affinity chromatography and Sephadex G-100 gel filtration. Recombinant ODH had kinetic properties similar to those of wild-type ODH isolated from the scallop's adductor muscle. Site-directed mutagenesis was used to elucidate the involvement of several amino acid residues for the reaction catalyzed by ODH. Cys148, which is conserved in all opine dehydrogenases known to date, was converted to serine or alanine, showing that this residue is not intrinsically important for catalysis. His212, Arg324 and Asp329, which are also conserved in all known opine dehydrogenase sequences, were subjected to site-directed mutagenesis. Modification of these residues revealed their importance for the catalytic activity of the enzyme. Conversion of each of these residues to alanine resulted in strong increases in Km and decreases in kcat values for pyruvate and l -arginine, but had little effect on the Km and kcat values for NADH. Assuming a similar structure for ODH compared with the only available structure of a bacterial opine dehydrogenase, these three amino acids may function as a catalytic triad in ODH similar to that found in lactate dehydrogenase or malate dehydrogenase. The carboxyl group of pyruvate is then stabilized by Arg324. In addition to orienting the substrate, His212 will act as an acid,base catalyst by donating a proton to the carbonyl group of pyruvate. The acidity of this histidine is further increased by the proximity of Asp329. [source]


Cloning and comparison of phylogenetically related chitinases from Listeria monocytogenes EGD and Enterococcus faecalis V583

JOURNAL OF APPLIED MICROBIOLOGY, Issue 6 2009
J.J. Leisner
Abstract Aims:, To compare enzymatic activities of two related chitinases, ChiA and EF0361, encoded by Listeria monocytogenes and Enterococcus faecalis, respectively. Methods and Results:, The chiA and EF0361 genes were amplified by PCR, cloned and expressed with histidine tags, allowing easy purification of the gene products. ChiA had a molecular weight as predicted from the amino acid sequence, whereas EF0361 was 1840 Da lower than expected because of C-terminal truncation. The ChiA and EF0361 enzymes showed activity towards 4-nitrophenyl N,N,-diacetyl-,- d -chitobioside with Km values of 1·6 and 2·1 mmol l,1, respectively, and kcat values of 21·6 and 6·5 s,1. The enzymes also showed activity towards 4-nitrophenyl ,- d - N, N,, N,-triacetylchitotriose and carboxy-methyl-chitin-Remazol Brilliant Violet but not towards 4-nitrophenyl N- acetyl-,- d -glucosaminide. Chitinolytic specificities of the enzymes were supported by their inactivity towards the substrates 4-nitrophenyl ,- d -cellobioside and peptidoglycan. The pH and temperature profiles for catalytic activities were relatively similar for both the enzymes. Conclusion:, The ChiA and EF0361 enzymes show a high degree of similarity in their catalytic activities although their hosts share environmental preferences only to some extent. Significance and Impact of the Study:, This study contributes to an understanding of the chitinolytic activities by L. monocytogenes and Ent. faecalis. Detailed information on their chitinolytic systems will help define potential reservoirs in the natural environment and possible transmission routes into food-manufacturing plants. [source]


The relative kinetics of clotting and lysis provide a biochemical rationale for the correlation between elevated fibrinogen and cardiovascular disease

JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 6 2007
P. Y. KIM
Summary.,Background:,Elevated plasma fibrinogen is a well known risk factor for cardiovascular disease. The mechanistic rationale for this is not known.Objectives:,These studies were carried out to determine the fibrinogen concentration dependencies of clotting and lysis times and thereby determine whether these times rationalize the correlation between an increased risk of cardiovascular disease and elevated plasma fibrinogen.Methods:,The time courses of clot formation and lysis were measured by turbidity in systems comprising a) fibrinogen, thrombin and plasmin, or b) fibrinogen, thrombin, plasminogen and t-PA, or c) plasma, thrombin and t-PA. From the lysis times, kcat and Km values for plasmin action on fibrin were determined.Results:,The time to clot increased linearly from 2.9 to 5.6 minutes as the fibrinogen concentration increased from 1 to 9 ,M and did not increase further as the fibrinogen concentration was raised to 20 ,M. In contrast, the clot lysis time increased linearly over the input fibrinogen concentration range of 2 to 20 ,M. A similar linear trend was found in the two systems with t-PA and plasminogen. Apparent Km and kcat values for plasmin were 1.1 ± 0.6 ,M and 28 ± 2 min,1, respectively. Km values for plasmin in experiments initiated with t-PA and plasminogen were 1.6 ± 0.2 ,M in the purified system and 2.1 ± 0.9 ,M in plasma.Conclusion:,As the concentration of fibrinogen increases, especially above physiologic level, the balance between fibrinolysis and clotting shifts toward the latter, providing a rationale for the increased risk of cardiovascular disease associated with elevated fibrinogen. [source]


Mutation analysis of carbamoyl phosphate synthetase: Does the structurally conserved glutamine amidotransferase triad act as a functional dyad?

PROTEIN SCIENCE, Issue 7 2008
Emily J. Hart
Abstract Evolutionarily conserved triad glutamine amidotransferase (GAT) domains catalyze the cleavage of glutamine to yield ammonia and sequester the ammonia in a tunnel until delivery to a variety of acceptor substrates in synthetase domains of variable structure. Whereas a conserved hydrolytic triad (Cys/His/Glu) is observed in the solved GAT structures, the specificity pocket for glutamine is not apparent, presumably because its formation is dependent on the conformational change that couples acceptor availability to a greatly increased rate of glutamine cleavage. In Escherichia coli carbamoyl phosphate synthetase (eCPS), one of the best characterized triad GAT members, the Cys269 and His353 triad residues are essential for glutamine hydrolysis, whereas Glu355 is not critical for eCPS activity. To further define the glutamine-binding pocket and possibly identify an alternative member of the catalytic triad that is situated for this role in the coupled conformation, we have analyzed mutations at Gln310, Asn311, Asp334, and Gln351, four conserved, but not yet analyzed residues that might potentially function as the third triad member. Alanine substitution of Gln351, Asn311, and Gln310 yielded respective Km increases of 145, 27, and 15, suggesting that Gln351 plays a key role in glutamine binding in the coupled conformation, and that Asn311 and Gln310 make less significant contributions. None of the mutant kcat values varied significantly from those for wild-type eCPS. Combined with previously reported data on other conserved eCPS residues, these results strongly suggest that Cys269 and His353 function as a catalytic dyad in the GAT site of eCPS. [source]


A thermostable triple mutant of pyranose 2-oxidase from Trametes multicolor with improved properties for biotechnological applications

BIOTECHNOLOGY JOURNAL, Issue 4 2009
Oliver Spadiut
Abstract In order to increase the thermal stability and the catalytic properties of pyranose oxidase (P2Ox) from Trametes multicolor toward its poor substrate D-galactose and the alternative electron acceptor 1,4-benzoquinone (1,4-BQ), we designed the triple-mutant T169G/E542K/V546C. Whereas the wild-type enzyme clearly favors D-glucose as its substrate over D-galactose [substrate selectivity (kcat/KM)Glc/(kcat/KM)Gal = 172], the variant oxidizes both sugars equally well [(kcat/KM)Glc/(kcat/KM)Gal = 0.69], which is of interest for food biotechnology. Furthermore, the variant showed lower KM values and approximately ten-fold higher kcat values for 1,4-BQ when D-galactose was used as the saturating sugar substrate, which makes this enzyme particularly attractive for use in biofuel cells and enzyme-based biosensors. In addition to the altered substrate specificity and reactivity, this mutant also shows significantly improved thermal stability. The half life time at 60°C was approximately 10 h, compared to 7.6 min for the wild-type enzyme. We performed successfully small-scale bioreactor pilot conversion experiments of D -glucose/D -galactose mixtures at both 30 and 50°C, showing the usefulness of this P2Ox variant in biocatalysis as well as the enhanced thermal stability of the enzyme. Moreover, we determined the crystal structure of the mutant in its unligated form at 1.55 Å resolution. Modeling D-galactose in position for oxidation at C2 into the mutant active site shows that substituting Thr for Gly at position 169 favorably accommodates the axial C4 hydroxyl group that would otherwise clash with Thr169 in the wild-type. [source]


Activation Function of Chloroperoxidase in the Presence of Metal Ions at Elevated Temperature from 25 to 55°C

CHINESE JOURNAL OF CHEMISTRY, Issue 7 2009
Qiang GAO
Abstract The investigation and comparison of chlorination activity of chloroperoxidase (CPO) from Caldariomyces fumago in metal ion solutions to those in pure buffer indicated that CPO could be effectively activated by some alkaline-earth metals and transition metals. The obtained maximum relative activity of CPO was 1.33 time at 75 µmol·L,1 Ca2+, 1.37 time at 90 µmol·L,1 Mg2+, 1.34 time at 90 µmol·L,1 Ni2+, and 1.27 time at 105 µmol·L,1 Co2+ at 25°C. Moreover, the CPO stability against temperature was improved in the presence of the above metal ions. At 55°C, CPO could retain only about 40% of activity whereas 75% and 81% of activity were maintained in Mg2+ and Ca2+ media, respectively. It was suggested that the metal ions bind to the acid-base catalytic groups Glu183, His105 and Asp106 around the active site of CPO, and activate CPO by both an enrichment of substrate concentration and the conformational change of CPO, which are favorable to the substrate access. The analysis of kinetic parameters indicated that the activation was mainly due to an increase in kcat values. The affinity and specificity of CPO to substrates were also improved in these metal ion media. The results in this work are promising in view of industrial applications of this versatile biological catalyst. [source]