Kb Upstream (kb + upstream)

Distribution by Scientific Domains


Selected Abstracts


Loss of heterozygosity and transcriptome analyses of a 1.2 Mb candidate ovarian cancer tumor suppressor locus region at 17q25.1-q25.2

MOLECULAR CARCINOGENESIS, Issue 3 2005
Nadège Presneau
Abstract Loss of heterozygosity (LOH) analysis was performed in epithelial ovarian cancers (EOC) to further characterize a previously identified candidate tumor suppressor gene (TSG) region encompassing D17S801 at chromosomal region 17q25.1. LOH of at least one informative marker was observed for 100 (71%) of 140 malignant EOC samples in an analysis of 6 polymorphic markers (cen - D17S1839 - D17S785 - D17S1817 - D17S801 - D17S751 - D17S722 - tel). The combined LOH analysis revealed a 453 kilobase (Kb) minimal region of deletion (MRD) bounded by D17S1817 and D17S751. Human and mouse genome assemblies were used to resolve marker inconsistencies in the D17S1839 - D17S722 interval and identify candidates. The region contains 32 known and strongly predicted genes, 9 of which overlap the MRD. The reference genomic sequences share nearly identical gene structures and the organization of the region is highly collinear. Although, the region does not show any large internal duplications, a 1.5 Kb inverted duplicated sequence of 87% nucleotide identity was observed in a 13 Kb region surrounding D17S801. Transcriptome analysis by Affymetrix GeneChip® and reverse transcription (RT)-polymerase chain reaction (PCR) methods of 3 well characterized EOC cell lines and primary cultures of normal ovarian surface epithelial (NOSE) cells was performed with 32 candidates spanning D17S1839 - D17S722 interval. RT-PCR analysis of 8 known or strongly predicted genes residing in the MRD in 10 EOC samples, that exhibited LOH of the MRD, identified FLJ22341 as a strong candidate TSG. The proximal repeat sequence of D17S801 occurs 8 Kb upstream of the putative promoter region of FLJ22341. RT-PCR analysis of the EOC samples and cell lines identified DKFZP434P0316 that maps proximal to the MRD, as a candidate. While Affymetrix technology was useful for initially eliminating less promising candidates, subsequent RT-PCR analysis of well-characterized EOC samples was essential to prioritize TSG candidates for further study. © 2005 Wiley-Liss, Inc. [source]


Characterization of the testis-specific promoter region in the human pituitary adenylate cyclase-activating polypeptide (PACAP) gene

GENES TO CELLS, Issue 6 2010
Aiko Tominaga
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic neuropeptide localized in the testis at concentration comparable to that found in the brain, suggesting involvement in spermatogenesis. In this study, we identified the human PACAP testis-specific exon (TSE) 10.9 kb upstream from the translational start site and found that the testis-specific transcript of the human PACAP gene was found to be spliced from the TSE into a region of intron 2 without a frameshift. The resulting PACAP precursor has no signal peptide, suggesting that PACAP functions physiologically in an intracrine manner in the testis. The 5,-flanking region of the TSE contains an 80-bp fragment with potent promoter activity in testicular F9 cell. Electrophoresis mobility shift assays showed that proteins from the F9 nuclear extract interacted specifically with the 80-bp fragment. DNA affinity chromatography allowed isolation of the specific proteins bound to the 80-bp fragment, two of which were identified as Poly (ADP-ribose) polymerase-1 (PARP-1) and TIA-1-related protein (TIAR) by mass spectrometry. By using their siRNAs, the depletion of their proteins in F9 cells affected the potent promoter activity of the 80-bp fragment, suggesting that they might be involved in the testis-specific gene expression of PACAP. [source]


An enhancer sequence directs LacZ expression to developing pharyngeal endoderm in transgenic mice

GENESIS: THE JOURNAL OF GENETICS AND DEVELOPMENT, Issue 2 2001
Hema Parmar
Abstract Summary: The murine Hoxc-6 homeobox gene comprises three exons with two distinct promoters (PRI and PRII) located 9 kb apart. To characterise the PRII promoter, a region 3 kb upstream of the transcription start site was sequenced, and an Antananapedia-like consensus binding sequence was found (Coletta et al., 1991). A LacZ reporter gene construct, containing three copies of this sequence, directs highly specific expression in cells forming pharyngeal endoderm in transgenic mice. Expression was first detected in a few individual anterior endoderm cells at E7.5, which increase in number up to E9.5, where expression was clearly visible in the pharyngeal endoderm. Expression of the endodermal genes HNF3,, Pax-9, Shh, and Nkx2.5 showed colocalization with the LacZ -positive cells in the foregut and pharyngeal endoderm. This novel enhancer provides a means of tracking the morphogenetic movement of endodermal cells fated to form the foregut. genesis 31:57,63, 2001. © 2001 Wiley-Liss, Inc. [source]


MITF-CM, a newly identified isoform of microphthalmia-associated transcription factor, is expressed in cultured mast cells

INTERNATIONAL JOURNAL OF LABORATORY HEMATOLOGY, Issue 2 2009
M. SHIOHARA
Summary The microphthalmia-associated transcription factor (MITF) gene encodes a basic helix-loop-helix and leucin zipper protein. In this study, we identified a novel MITF isoform, MITF-CM, which possesses a unique amino terminus. Exon 1CM is located 84 kb upstream of the exon encoding the B1b domain. MITF-CM was expressed in the human mast cell line HMC-1, the human basophilic cell line KU812, and CB-derived mast cells cultured for 10 weeks as well as bone marrow mononuclear cells. Transient transfection of MITF-CM cDNA in COS-7 cells resulted in the expression of a 64-kDa protein, detected by Western blotting, and nuclear localization of the protein, detected by immunostaining. The transient cotransfection of a luciferase construct under the control of the tyrosinase promoter and MITF-CM cDNA increased luciferase activity threefold. In contrast, none of the MITF isoforms transactivated both the tryptase and chymase gene promoters, indicating differences in the gene transactivation system between humans and mice. [source]


Craniosynostosis-Associated Gene Nell-1 Is Regulated by Runx2,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 1 2007
Thien Truong
Abstract We studied the transcriptional regulation of NELL-1, a craniosynostosis-related gene. We identitifed three OSE2 elements in the NELL-1 promoter that are directly bound and transactivated by Runx2. Forced expression of Runx2 induces NELL-1 expression in rat calvarial cells. Introduction: We previously reported the upregulation of NELL-1 in human craniosynostosis and the overexpression of Nell-1 in transgenic animals that induced premature suture closure associated with increased osteoblast differentiation. To study the transcriptional regulation of NELL-1, we analyzed the 5, flanking region of the human NELL-1 gene. We identified three osteoblast specific binding elements 2 (OSE2) sites (A, B, and C) within 2.2 kb upstream of the transcription start site and further studied the functionality of these sites. Materials and Methods: An area of 2.2 kb and a truncated 325 bp, which lacked the three OSE sites, were cloned into a luciferase reporter gene, and co-transfected with Runx2 expression plasmid. The three OSE2 sites were individually mutated and co-transfected with Runx2 expression plasmid into Saos2 cells. Gel shifts and supershifts with Runx2 antibodies were used to determine specific binding to OSE2 sites. CHIP assays were used to study in vivo binding of Runx2 to the Nell-1 promoter. Runx2 expression plasmid was transfected into wildtype and Runx2,/, calvarial cells. Nell-1, osteocalcin, and Runx2 expression levels were measured using RT-PCR. Results: Addition of Runx2 dose-dependently increased the luciferase activity in the human NELL-1 promoter-luciferase p2213. The p325 truncated NELL-1 construct showed significantly lower basal level of activity. Nuclear extract from Saos2 cells formed complexes with site A, B, and C probes and were supershifted with Runx2 antibody. Mutation of sites A, B, and C significantly decreased basal promoter activity. Furthermore, mutation of sites B and C had a blunted response to Runx2, whereas mutation of site A had a lesser effect. Runx2 bound to NELL-1 promoter in vivo. Transfection of Runx2 in rat osteoblasts upregulated Nell-1 and Ocn expression, and in Runx2 null calvarial cells, both Nell-1 and Ocn expression were rescued. Conclusions: Runx2 directly binds to the OSE2 elements and transactivates the human NELL-1 promoter. These results suggest that Nell-1 is likely a downstream target of Runx2. These findings may also extend our understanding of the molecular mechanisms governing the pathogenesis of craniosynostosis. [source]


Characterization of the upstream mouse Cbfa1/Runx2 promoter,

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 4 2001
Z. S. Xiao
Abstract Cbfa1 (or Runx2/AML-3/PEPB2,) is a transcriptional activator of osteoblastic differentiation. To investigate the regulation of Cbfa1 expression, we isolated and characterized a portion of the 5,-flanking region of the Cbfa1 gene containing its "bone-related" or P1 promoter and exon 1. We identified additional coding sequence in exon 1 and splice donor sites that potentially give rise to a novel Cbfa1 isoform containing an 18 amino acid insert. In addition, primer extension mapping identified in the Cbfa1 promoter a minor mRNA start site located ,0.8 kb 5, upstream of the ATG encoding the MASN/p57 isoform and ,0.4 kb upstream of the previously reported start site. A luciferase reporter construct containing 1.4 kb of the mouse Cbfa1 promoter was analyzed in Ros 17/2.8 and MC3T3-E1 osteoblast cell lines that express high levels of Cbfa1 transcripts. The activity of this construct was also examined in non-osteoblastic Cos-7 and NIH3T3 cells that do not express Cbfa1 and mesenchymal-derived cell lines, including CH3T101/2, C2C12, and L929 cells, that express low levels of mature Cbfa1 transcripts. The 1.4 kb 5, flanking sequence of the Cbfa1 gene directed high levels of transcriptional activity in Ros 17/2.8 and MC3T3-E1 osteoblasts compared to non-osteoblasts Cos-7 cells, but this construct also exhibited high levels of expression in C310T1/2, L929, and C2C12 cells as well as NIH3T3 cells. In addition, Cbfa1 mRNA expression, but not the activity of the Cbfa1 promoter, was upregulated in a dose-dependent manner in pluripotent mesenchymal C2C12 by bone morphogenetic protein-2 (BMP-2). These data indicate that Cbfa1 is expressed in osteogenic as well as non-osteogenic cells and that the regulation of Cbfa1 expression is complex, possibly involving both transcriptional and post-transcriptional mechanisms. Additional studies are needed to further characterize important regulatory elements and to identify additional regions of the promoter and/or post-transcriptional events responsible for the cell-type restricted regulation of Cbfa1 expression. J. Cell. Biochem. 82: 647,659, 2001. © 2001 Wiley-Liss, Inc. [source]


Identification and Characterization of a DNase Hypersensitive Region of the Human Tyrosinase Gene

PIGMENT CELL & MELANOMA RESEARCH, Issue 6 2003
James P. Fryer
Mutations of the tyrosinase gene produce oculocutaneous albinism type 1 (OCA1). Most affected individuals are compound heterozygotes with different maternal and paternal mutations, but a substantial number of presumed tyrosinase alleles in these individuals have no identifiable mutation in the coding or proximal promoter region of the gene. This suggests that mutations in other regions of the gene, such as regulatory regions that are removed from the direct proximity of the coding sequence, may account for these currently unidentifiable mutations. The mouse tyrosinase gene has a distal enhancer or locus control region (LCR) that provides position-independent stimulation of gene expression, and a homologous regulatory region (HR) of the human gene could be the site of some of these mutations. We report a region 9 kb upstream of the human tyrosinase transcriptional start site that may be involved in regulation of this gene. Analysis of this region shows DNase I hypersensitivity in a cell lineage-specific pattern, a pattern indicative of regulatory regions of a gene. This region also has significant enhancer function when reporter vectors containing it are transfected into either human or mouse melanocyte cell lines, and elimination of specific sequences with homology to the mouse core enhancer in this region extinguishes the enhancer function. We believe that this region of homology contains sequences critical in the regulation of the human tyrosinase gene and is a candidate for the location of OCA1 mutations. [source]


An INSIG2 Polymorphism Affects Glucose Homeostasis in Sardinian Obese Children and Adolescents

ANNALS OF HUMAN GENETICS, Issue 5 2010
Patrizia Zavattari
Summary Allelic variants of a single nucleotide polymorphism (SNP), rs7566605, located approximately 10 kb upstream of the INSIG2 gene have been found in association with body weight and with other clinical features related to obesity in some populations but not in others. Our objective was to test the association of this SNP in obese children and adolescents from the genetically isolated population of Sardinia. We tested the association of rs7566605 with body mass index (BMI) and with serum glucose and insulin concentrations and a surrogate measure of insulin resistance (HOMA-IR) in a cohort of 747 Sardinian obese children and adolescents. A case control analysis was performed using 548 ethnically-matched healthy controls. Allelic frequencies of the SNP were similar between patients and controls. Mean glucose and insulin concentration and mean HOMA-IR values were significantly higher in patients carrying the CC genotype than in the CG and GG carriers. In the patients with impaired fasting glucose (IFG) and/or impaired glucose tolerance (IGT), allele C was significantly more frequent than in controls. Although INSIG2 polymorphisms do not consistently associate with BMI, the observation of an association with glucose concentration would support a role for this gene in the metabolic complications of obesity. [source]


A genome-wide association study identifies an osteoarthritis susceptibility locus on chromosome 7q22,

ARTHRITIS & RHEUMATISM, Issue 2 2010
Hanneke J. M. Kerkhof
Objective To identify novel genes involved in osteoarthritis (OA), by means of a genome-wide association study. Methods We tested 500,510 single-nucleotide polymorphisms (SNPs) in 1,341 Dutch Caucasian OA cases and 3,496 Dutch Caucasian controls. SNPs associated with at least 2 OA phenotypes were analyzed in 14,938 OA cases and ,39,000 controls. Meta-analyses were performed using the program Comprehensive Meta-analysis, with P values <1 × 10,7 considered genome-wide significant. Results The C allele of rs3815148 on chromosome 7q22 (minor allele frequency 23%; intron 12 of the COG5 gene) was associated with a 1.14-fold increased risk (95% confidence interval 1.09,1.19) of knee and/or hand OA (P = 8 × 10,8) and also with a 30% increased risk of knee OA progression (95% confidence interval 1.03,1.64) (P = 0.03). This SNP is in almost complete linkage disequilibrium with rs3757713 (68 kb upstream of GPR22), which is associated with GPR22 expression levels in lymphoblast cell lines (P = 4 × 10,12). Immunohistochemistry experiments revealed that G protein,coupled receptor protein 22 (GPR22) was absent in normal mouse articular cartilage or synovium. However, GPR22-positive chondrocytes were found in the upper layers of the articular cartilage of mouse knee joints that were challenged with in vivo papain treatment or methylated bovine serum albumin treatment. GPR22-positive chondrocyte-like cells were also found in osteophytes in instability-induced OA. Conclusion Our findings identify a novel common variant on chromosome 7q22 that influences susceptibility to prevalence and progression of OA. Since the GPR22 gene encodes a G protein,coupled receptor, this is potentially an interesting therapeutic target. [source]