K Star (k + star)

Distribution by Scientific Domains


Selected Abstracts


Probing small scale structure in the atmosphere of V471 Tauri

ASTRONOMISCHE NACHRICHTEN, Issue 3 2004
F. M. Walter
Abstract The white dwarf in the eclipsing binary system V471 Tau is viewed through the atmosphere of the active K star prior to ingress and after egress. In the far UV the surface brightness of the hot white dwarf far outshines the K star emission. We can use this to probe the structure of the extended K star atmosphere along one line of sight, in absorption, on spatial scales of the radius of the white dwarf (10,000 km). The time series of HST/STIS spectra which show a hot (>250,000 K) extended (>1 K star radius) atmosphere around the K star. We see discrete structures in the velocity-resolved spectra, on spatial scales of less than 100,000 km. The mean velocity is that expected of gas in co-rotation with the K star, but the discrete velocity structures have excursions of up to 70 km/s from the mean. The mean temperature seems to increase with height above the K star photosphere. ( 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


The incidence of mid-infrared excesses in G and K giants

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2008
Mark H. Jones
ABSTRACT Using photometric data from the Two-Micron All-Sky Survey (2MASS) and GLIMPSE catalogues, I investigate the incidence of mid-infrared (mid-IR) excesses (,10 ,m) in G and K stars of luminosity class III. In order to obtain a large sample size, stars are selected using a near-IR colour,magnitude diagram. Sources which are candidates for showing mid-IR excess are carefully examined and modelled to determined whether they are likely to be G/K giants. It is found that mid-IR excesses are present at a level of (1.8 0.4) 10,3. While the origin of these excesses remains uncertain, it is plausible that they arise from debris discs around these stars. I note that the measured incidence is consistent with a scenario in which dust lifetimes in debris discs are determined by Poynting,Robertson drag rather than by collisions. [source]


Kinematics and metallicity analysis for nearby F, G and K stars

ASTRONOMISCHE NACHRICHTEN, Issue 1 2009
S. Vidojevi
Abstract A sample containing 1 026 stars of spectral types F, G, and K, mainly dwarfs, from the solar neighbourhood with available space velocities and metallicities is treated. The treatment comprises a statistical analysis of the metallicity and velocity data and calculation of galactocentric orbits. Sample stars identified as members of the galactic halo are detached from the rest of the sample based on the values of their metallicities, velocity components and galactocentric orbits. In identifying halo stars a new, kinematical, criterion is proposed. Except one, these halo stars are the metal-poorest ones in the sample. Besides, they have very high velocities with respect to LSR. On the other hand, the separation between the thin disc and thick one is done statistically based on LSR space velocities, membership probability (Schwarzschild distribution with assumed parameters) and galactocentric orbits. In the metallicity these two groups are not much different. For each of the three subsamples the mean motion and velocity ellipsoid are calculated. The elements of the velocity ellipsoids agree well with the values found in the literature, especially for the thin disc. The fractions of the subsystems found for the present sample are: thin disc 93%, thick disc 6%, halo 1%. The sample stars established to be members of the thin disc are examined for existence of star streams. Traces of both, known and unknown, star streams are not found ( 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]