Juvenile Pink Salmon (juvenile + pink_salmon)

Distribution by Scientific Domains


Selected Abstracts


Ecosystem controls of juvenile pink salmon (Onchorynchus gorbuscha) and Pacific herring (Clupea pallasi) populations in Prince William Sound, Alaska

FISHERIES OCEANOGRAPHY, Issue 2001
Robert T. Cooney
Abstract Five years of field, laboratory, and numerical modelling studies demonstrated ecosystem-level mechanisms influencing the mortality of juvenile pink salmon and Pacific herring. Both species are prey for other fishes, seabirds, and marine mammals in Prince William Sound. We identified critical time-space linkages between the juvenile stages of pink salmon and herring rearing in shallow-water nursery areas and seasonally varying ocean state, the availability of appropriate zooplankton forage, and the kinds and numbers of predators. These relationships defined unique habitat dependencies for juveniles whose survivals were strongly linked to growth rates, energy reserves, and seasonal trophic sheltering from predators. We found that juvenile herring were subject to substantial starvation losses during a winter period of plankton diminishment, and that predation on juvenile pink salmon was closely linked to the availability of alternative prey for fish and bird predators. Our collaborative study further revealed that juvenile pink salmon and age-0 herring exploit very different portions of the annual production cycle. Juvenile pink salmon targeted the cool-water, early spring plankton bloom dominated by diatoms and large calanoid copepods, whereas young-of-the-year juvenile herring were dependent on warmer conditions occurring later in the postbloom summer and fall when zooplankton was composed of smaller calanoids and a diversity of other taxa. The synopsis of our studies presented in this volume speaks to contemporary issues facing investigators of fish ecosystems, including juvenile fishes, and offers new insight into problems of bottom-up and top-down control. In aggregate, our results point to the importance of seeking mechanistic rather than correlative understandings of complex natural systems. [source]


Ecological processes influencing mortality of juvenile pink salmon (Oncorhynchus gorbuscha) in Prince William Sound, Alaska

FISHERIES OCEANOGRAPHY, Issue 2001
T. M. Willette
Abstract Our collaborative work focused on understanding the system of mechanisms influencing the mortality of juvenile pink salmon (Oncorhynchus gorbuscha) in Prince William Sound, Alaska. Coordinated field studies, data analysis and numerical modelling projects were used to identify and explain the mechanisms and their roles in juvenile mortality. In particular, project studies addressed the identification of major fish and bird predators consuming juvenile salmon and the evaluation of three hypotheses linking these losses to (i) alternative prey for predators (prey-switching hypothesis); (ii) salmon foraging behaviour (refuge-dispersion hypothesis); and (iii) salmon size and growth (size-refuge hypothesis). Two facultative planktivorous fishes, Pacific herring (Clupea pallasi) and walleye pollock (Theragra chalcogramma), probably consumed the most juvenile pink salmon each year, although other gadids were also important. Our prey-switching hypothesis was supported by data indicating that herring and pollock switched to alternative nekton prey, including juvenile salmon, when the biomass of large copepods declined below about 0.2 g m,3. Model simulations were consistent with these findings, but simulations suggested that a June pteropod bloom also sheltered juvenile salmon from predation. Our refuge-dispersion hypothesis was supported by data indicating a five-fold increase in predation losses of juvenile salmon when salmon dispersed from nearshore habitats as the biomass of large copepods declined. Our size-refuge hypothesis was supported by data indicating that size- and growth-dependent vulnerabilities of salmon to predators were a function of predator and prey sizes and the timing of predation events. Our model simulations offered support for the efficacy of representing ecological processes affecting juvenile fishes as systems of coupled evolution equations representing both spatial distribution and physiological status. Simulations wherein model dimensionality was limited through construction of composite trophic groups reproduced the dominant patterns in salmon survival data. In our study, these composite trophic groups were six key zooplankton taxonomic groups, two categories of adult pelagic fishes, and from six to 12 groups for tagged hatchery-reared juvenile salmon. Model simulations also suggested the importance of salmon density and predator size as important factors modifying the predation process. [source]


Functional response of juvenile pink and chum salmon: effects of consumer size and two types of zooplankton prey

JOURNAL OF FISH BIOLOGY, Issue 2 2007
J. H. Moss
Feeding rate experiments were conducted for pink salmon Oncorhynchus gorbuscha fry [mean fork length (LF) 39 mm], juveniles (103,104 mm LF) and juvenile chum salmon Oncorhynchus keta (106,107 mm LF). Fishes were presented with small copepod (Tisbi sp.) or larger mysid shrimp (Mysidopsis bahia) prey at varying densities ranging from 1 to 235 prey l,1 in feeding rate experiments conducted at water temperatures ranging from 10·5 to 12·0° C under high light levels and low turbidity conditions. Juvenile pink and chum salmon demonstrated a type II functional response to mysid and copepod prey. Mysid prey was readily selected by both species whereas the smaller bodied copepod prey was not. When offered copepods, pink salmon fry fed at a higher maximum consumption rate (2·5 copepods min,1) than larger juvenile pink salmon (0·4 copepods min,1), whereas larger juvenile chum salmon exhibited the highest feeding rate (3·8 copepods min,1). When feeding on mysids, the maximum feeding rate for larger juvenile pink (12·3 mysids min,1) and chum (11·5 mysids min,1) salmon were similar in magnitude, and higher than feeding rates on copepods. Functional response models parameterized for specific sizes of juvenile salmon and zooplankton prey provide an important tool for linking feeding rates to ambient foraging conditions in marine environments, and can enable mechanistic predictions for how feeding and growth should respond to spatial-temporal variability in biological and physical conditions during early marine life stages. [source]