Distribution by Scientific Domains
Distribution within Earth and Environmental Science

Kinds of Jurassic

  • early jurassic
  • late jurassic
  • lower jurassic
  • middle jurassic
  • upper jurassic

  • Terms modified by Jurassic

  • jurassic source rock
  • jurassic stratigraphy
  • jurassic stratum
  • jurassic succession
  • jurassic time

  • Selected Abstracts


    A. Sahin
    Most classical reservoir engineering concepts are based on homogeneous reservoirs despite the fact that homogeneous reservoirs are the exception rather than the rule. This is especially true of carbonate reservoirs in the Middle East which are known to be highly heterogeneous. The realistic petrophysical characterization of these kinds of reservoirs is not an easy task and must include the study of directional variations of permeability. Such variation can be incorporated into engineering calculations as the square root of the ratio of horizontal to vertical permeability, a parameter known as the anisotropy ratio. This paper addresses the distribution of anisotropy ratio values in an Upper Jurassic carbonate reservoir in the Eastern Province of Saudi Arabia. Based on whole core data from a number of vertical wells, statistical distributions of horizontal and vertical permeability measurements as well as anisotropy ratios were determined. The distributions of both permeability measurements and anisotropy ratios have similar patterns characterized by considerable positive skewness. The coefficients of variation for these distributions are relatively high, indicating their very heterogeneous nature. Comparison of plots of anisotropy ratios against depth for the wells and the corresponding core permeability values indicate that reservoir intervals with lower vertical permeability yield consistently higher ratios with considerable fluctuations. These intervals are represented by lower porosity mud-rich and/or mud-rich/granular facies. Granular facies, on the other hand, yielded considerably lower ratios without significant fluctuations. [source]


    PALAEONTOLOGY, Issue 4 2009
    Abstract:,Eshanosaurus deguchiianus is based on a single left dentary from the Lower Lufeng Formation (Lower Jurassic) of Yunnan Province, China. It was originally identified as the earliest known member of Therizinosauroidea (Theropoda: Coelurosauria), a conclusion that results in a significant downward range extension for this clade (>65 million years) and for many other major lineages within Coelurosauria. However, this interpretation has been questioned and several authors have proposed that the anatomical features used to refer Eshanosaurus to Therizinosauroidea are more consistent with attribution to a basal sauropodomorph dinosaur. Detailed consideration of the holotype specimen suggests that several features of the dentary and dentition exclude Eshanosaurus from Sauropodomorpha and support its inclusion within Therizinosauroidea. If accepted as an Early Jurassic coelurosaur, Eshanosaurus has important implications for understanding the timing and tempo of early theropod diversification. Moreover, its provenance also suggests that substantial portions of the coelurosaur fossil record may be missing or unsampled. However, the Early Jurassic age of Eshanosaurus requires confirmation if this taxon is to be fully incorporated into broader evolutionary studies. [source]


    PALAEONTOLOGY, Issue 4 2009
    Abstract:, The assemblage of large-bodied theropod remains from the Taynton Limestone Formation (middle Bathonian) of Stonesfield, Oxfordshire and the Chipping Norton Limestone Formation (lowest Bathonian) of New Park Quarry, Gloucestershire, UK is interpreted as monospecific. An assessment of morphological variation in theropod fossils from these localities reveals no taxonomically-significant variation among remains representing large-bodied individuals. Previous observations of anatomical variation among femora, ilia and scapulocoracoids are attributed to postmortem damage and deformation. Referral of all such material to the first named dinosaur taxon, Megalosaurus bucklandii Mantell, is therefore justified. ,Iliosuchus incognitus' lacks autapomorphies and is a nomen dubium. However, other remains of small-bodied theropods from Stonesfield indicate a minimum of two small-bodied taxa that are distinct from M. bucklandii. [source]

    The Tendaguru Formation (Late Jurassic to Early Cretaceous, southern Tanzania): definition, palaeoenvironments, and sequence stratigraphy

    Robert Bussert
    Abstract The well-known Late Jurassic to Early Cretaceous Tendaguru Beds of southern Tanzania have yielded fossil plant remains, invertebrates and vertebrates, notably dinosaurs, of exceptional scientific importance. Based on data of the German-Tanzanian Tendaguru Expedition 2000 and previous studies, and in accordance with the international stratigraphic guide, we raise the Tendaguru Beds to formational rank and recognise six members (from bottom to top): Lower Dinosaur Member, Nerinella Member, Middle Dinosaur Member, Indotrigonia africana Member, Upper Dinosaur Member, and Rutitrigonia bornhardti-schwarzi Member. We characterise and discuss each member in detail in terms of derivation of name, definition of a type section, distribution, thickness, lithofacies, boundaries, palaeontology, and age. The age of the whole formation apparently ranges at least from the middle Oxfordian to the Valanginian through Hauterivian or possibly Aptian. The Tendaguru Formation constitutes a cyclic sedimentary succession, consisting of three marginal marine, sandstone-dominated depositional units and three predominantly coastal to tidal plain, fine-grained depositional units with dinosaur remains. It represents four third-order sequences, which are composed of transgressive and highstand systems tracts. Sequence boundaries are represented by transgressive ravinement surfaces and maximum flooding surfaces. In a more simple way, the depositional sequences can be subdivided into transgressive and regressive sequences/systems tracts. Whereas the transgressive systems tracts are mainly represented by shallow marine shoreface, tidal channel and sand bar sandstones, the regressive systems tracts predominantly consist of shallow tidal channel, tidal flat, and marginal lagoonal to supratidal deposits. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]

    Palaeoecology and depositional environments of the Tendaguru Beds (Late Jurassic to Early Cretaceous, Tanzania)

    Martin Aberhan
    Abstract The Late Jurassic to Early Cretaceous Tendaguru Beds (Tanzania, East Africa) have been well known for nearly a century for their diverse dinosaur assemblages. Here, we present sedimentological and palaeontological data collected by the German-Tanzanian Tendaguru Expedition 2000 in an attempt to reconstruct the palaeo-ecosystems of the Tendaguru Beds at their type locality. Our reconstructions are based on sedimentological data and on a palaeoecological analysis of macroinvertebrates, microvertebrates, plant fossils and microfossils (ostracods, foraminifera, charophytes, palynomorphs). In addition, we included data from previous expeditions, particularly those on the dinosaur assemblages. The environmental model of the Tendaguru Beds presented herein comprises three broad palaeoenvironmental units in a marginal marine setting: (1) Lagoon-like, shallow marine environments above fair weather wave base and with evidence of tides and storms. These formed behind barriers such as ooid bar and siliciclastic sand bar complexes and were generally subject to minor salinity fluctuations. (2) Extended tidal flats and low-relief coastal plains. These include low-energy, brackish coastal lakes and ponds as well as pools and small fluvial channels of coastal plains in which the large dinosaurs were buried. Since these environments apparently were, at best, poorly vegetated, the main feeding grounds of giant sauropods must have been elsewhere. Presumably, tidal flats and coastal plains were visited by dinosaurs primarily during periods of drought. (3) Vegetated hinterland. Vegetation of this environment can only be inferred indirectly from plant material transported into the other depositional environments. Vegetation was dominated by a diverse conifer flora, which apparently formed part of the food source of large herbivorous sauropods. Evidence from various sources suggests a subtropical to tropical palaeoclimate, characterised by seasonal rainfall alternating with a pronounced dry season during the Late Jurassic. In Early Cretaceous times, sedimentological and palaeontological proxies suggest a climatic shift towards more humid conditions. Die Tendaguru-Schichten von Tansania in Ostafrika (Oberjura bis Unterkreide) sind als Lagerstätte oberjurassischer Dinosaurier seit nahezu einem Jahrhundert weltweit bekannt. Anhand von sedimentologischen und paläontologischen Daten, die während der Deutsch-Tansanischen Tendaguru Expedition 2000 im Typus-Gebiet der Tendaguru-Schichten gewonnen wurden, werden Paläo-Ökosysteme rekonstruiert. Grundlage der Rekonstruktionen sind die Auswertung sedimentologischer Daten sowie die paläo-ökologische Analyse von Makroinvertebraten, Mikrovertebraten, pflanzlichen Fossilien und Mikrofossilien (Ostrakoden, Foraminiferen, Charophyten, Palynomorphen). Darüber hinaus werden Informationen über Dinosaurier berücksichtigt, die bei früheren Expeditionen gewonnen wurden. Das hier vorgestellte Ablagerungsmodell der Tendaguru-Schichten umfaßt drei Teilbereiche eines randlich marinen Sedimentationsraumes, die wie folgt gekennzeichnet werden können: (1) Lagunen-artige, marine Flachwasserbereiche, die oberhalb der Schönwetter-Wellenbasis lagen und unter deutlichem Einfluß von Gezeiten und Stürmen standen. Sie waren vom offenen Meer durch Barrieren, wie Ooidbarren und siliziklastischen Sandbarrenkomplexen, getrennt und wiesen einen leicht schwankenden Salzgehalt auf. (2) Ausgedehnte Wattgebiete und flache Küstenebenen. Dort befanden sich niedrig-energetische, brackische Strandseen und Teiche sowie Tümpel und kleinere Flußrinnen, in denen die großen Dinosaurier eingebettet wurden. Da diese Lebensräume bestenfalls dürftig bewachsen waren, müssen die Nahrungsquellen und der eigentliche Lebensraum der riesigen Sauropoden anderswo gelegen haben. Vermutlich wurden die Wattgebiete und Flachküsten von Dinosauriern vorrangig in den Trockenzeiten aufgesucht. (3 ) Bewachsenes Hinterland. Die Vegetation dieses Lebensraumes kann nur indirekt aus Pflanzenresten erschlossen werden, die in die anderen Ablagerungsraume transportiert wurden. Die Vegetation wurde von einer diversen Koniferenflora dominiert, die zumindest teilweise die Nahrungsgrundlage der großen, herbivoren Sauropoden bildete. Sedimentologische und paläontologische Indikatoren sprechen für ein subtropisches bis tropisches Klima wahrend der späten Jurazeit mit einem jahreszeitlichen Wechsel von Regenfällen und ausgeprägten Trockenzeiten. In der frühen Kreidezeit deutet sich ein Wechsel zu starker humiden Bedingungen an. [source]

    The rock-hewn churches of Tigrai, Northern Ethiopia: A geological perspective

    Asfawossen Asrat
    Ethiopia is endowed with many rock-hewn churches, with the largest group in central and eastern Tigrai. These churches can be divided into four zones: the Atsbi, Hawzen-Ger'alta, Sinkata-Adigrat, and Tembien, with more than 100 rock-hewn churches of different ages, sizes, and histories. However, they have one thing in common: All are carved into sandstone. The Enticho, Adigrat, and Ambaradam sandstones (Permo-Carboniferous, Triassic,Middle Jurassic, and Early Cretaceous, respectively) are extensively exposed in these areas and are characterized by thick and massive beds of coarse- to fine-grained and well-sorted successions. These sandstones are easily carved, yet compact enough to withstand pressure. Although limestone, basalt, and crystalline rocks are exposed in the same area, few rock-hewn churches have been carved into them. The rock type is, therefore, the most important factor in the location of these rock-hewn churches. © 2002 Wiley Periodicals, Inc. [source]

    An eastern Tethyan (Tibetan) record of the Early Jurassic (Toarcian) mass extinction event

    GEOBIOLOGY, Issue 3 2006
    ABSTRACT A record of the Early Jurassic mass extinction event is reported from eastern Tethyan (Tibetan) locations for the first time. In the Mount Everest region a thick Lower Jurassic carbonate formation, here named the Yungjia Formation, is developed within the predominantly clastic Triassic,Jurassic succession. Within the formation a sharp transition from peloidal packstones/grainstones to thin-bedded, pyritic micrite-shales interbeds records a sharp pulse of deepening and development of dysoxic bottom waters. Both the lithiotid bivalves and the lituolid foraminifera are important constituents of the lower Yungjia Formation but they disappear at this flooding surface or a short distance below it. This extinction event is comparable to that seen at the base of the Pliensbachian/Toarcian boundary in western Tethyan platform carbonates but the Tibetan events occurred late in the Toarcian Stage as indicated by nannofossil biostratigraphy and C isotope chemostratigraphy. The Early Jurassic extinction event (and the associated spread of oxygen-poor waters) was therefore not synchronous throughout the Tethyan region. [source]

    Reconstruction of palaeo-burial history and pore fluid pressure in foothill areas: a sensitivity test in the Hammam Zriba (Tunisia) and Koh-i-Maran (Pakistan) ore deposits

    GEOFLUIDS (ELECTRONIC), Issue 2 2003
    L. Benchilla
    Abstract The burial and pore fluid pressure history of fluorite ore deposits is reconstructed: (i) at Hammam Zriba,Djebel Guebli along the eastern margin of the Tunisian Atlas; and (ii) at Koh-i-Maran within the northern part of the Kirthar Range in Pakistan. Both the deposits are hosted by Late Jurassic carbonate reservoirs, unconformably overlain by Late Cretaceous seals. Microthermometric analyses on aqueous and petroleum fluid inclusions with pressure,volume,temperature,composition (PVTX) modeling of hydrocarbon fluid isochores are integrated with kinematics and thermal 2D basin modeling in order to determine the age of mineralization. The results suggest a Cenozoic age for the fluorite mineralization and a dual fluid migration model for both ore deposits. The PVTX modeling indicates that the initial stage of fluorite cementation at Hammam Zriba occurred under fluid pressures of 115 ± 5 bars and at a temperature close to 130°C. At Koh-i-Maran, the F3 geodic fluorite mineralization developed under hydrostatic pressures of 200 ± 10 bars, and at temperatures of 125,130°C. The late increase in temperature recorded in the F3 fluorites can be accounted for by rapid rise of hotter fluids (up to 190°C) along open fractures, resulting from hydraulic fracturing of overpressured sedimentary layers. [source]

    Ancient hydrocarbon seeps from the Mesozoic convergent margin of California: carbonate geochemistry, fluids and palaeoenvironments

    GEOFLUIDS (ELECTRONIC), Issue 2 2002
    K. A. Campbell
    Abstract More than a dozen hydrocarbon seep-carbonate occurrences in late Jurassic to late Cretaceous forearc and accretionary prism strata, western California, accumulated in turbidite/fault-hosted or serpentine diapir-related settings. Three sites, Paskenta, Cold Fork of Cottonwood Creek and Wilbur Springs, were analyzed for their petrographic, geochemical and palaeoecological attributes, and each showed a three-stage development that recorded the evolution of fluids through reducing,oxidizing,reducing conditions. The first stage constituted diffusive, reduced fluid seepage (CH4, H2S) through seafloor sediments, as indicated by Fe-rich detrital micrite, corroded surfaces encrusted with framboidal pyrite, anhedral yellow calcite and negative cement stable isotopic signatures (,13C as low as ,35.5, PDB; ,18O as low as ,10.8, PDB). Mega-invertebrates, adapted to reduced conditions and/or bacterial chemosymbiosis, colonized the sites during this earliest period of fluid seepage. A second, early stage of centralized venting at the seafloor followed, which was coincident with hydrocarbon migration, as evidenced by nonluminescent fibrous cements with ,13C values as low as ,43.7, PDB, elevated ,18O (up to +2.3, PDB), petroleum inclusions, marine borings and lack of pyrite. Throughout these early phases of hydrocarbon seepage, microbial sediments were preserved as layered and clotted, nondetrital micrites. A final late-stage of development marked a return to reducing conditions during burial diagenesis, as implied by pore-associated Mn-rich cement phases with bright cathodoluminescent patterns, and negative ,18O signatures (as low as ,14, PDB). These recurring patterns among sites highlight similarities in the hydrogeological evolution of the Mesozoic convergent margin of California, which influenced local geochemical conditions and organism responses. A comparison of stable carbon and oxygen isotopic data for 33 globally distributed seep-carbonates, ranging in age from Devonian to Recent, delineated three groupings that reflect variable fluid input, different tectono-sedimentary regimes and time,temperature-dependent burial diagenesis. [source]

    Contribution of different kinematic models and a complex Jurassic stratigraphy in the construction of a forward model for the Montagna dei Fiori fault-related fold (Central Apennines, Italy)

    GEOLOGICAL JOURNAL, Issue 5-6 2010
    L. Di Francesco
    Abstract The Montagna dei Fiori has received attention from geologists over the past decades because of both its Jurassic stratigraphy and its complex present-day structure. The latter is the result of multiple phases of deformation, from the Early Jurassic, during the opening of the Tethyan Ocean, to Neogene evolution of the Apennines fold-and-thrust belt. In this paper, we present a new stratigraphic interpretation of the Jurassic palaeogeography, based on a new geological mapping project in the area. Using this new stratigraphy, we constructed two forward models, using a combination of different fault/fold interactions, in order to unravel the kinematic evolution of the Montagna dei Fiori fault-related fold. The first model was constructed manually using the fault-bend and fault-propagation theories from an initial configuration which included previous extensional features, whereas the second model was constructed using the software 2DMove (Midland Valley) using the fault-bend and trishear fault-propagation folding theories and starting from a layer-cake stratigraphy. Both forward models involved the same main steps and provided a reasonable geological simulation of the geometry of the Montagna dei Fiori structure. Copyright © 2010 John Wiley & Sons, Ltd. [source]

    Ophiolite-bearing mélanges in southern Italy

    GEOLOGICAL JOURNAL, Issue 2 2009
    Luigi Tortorici
    Abstract In southern Italy two ophiolite-bearing belts, respectively involved in the Adria-verging southern Apennines and in the Europe-verging thrust belt of the northern Calabrian Arc, represent the southward extension of the northern Apennines and of ,Alpine Corsica' ophiolitic units, respectively. They form two distinct suture zones, which are characterized by different age of emplacement and opposite sense of tectonic transport. The ophiolite-bearing units of the southern Apennines are represented by broken formation and tectonic mélange associated with remnants of a well-developed accretionary wedge emplaced on top of the Adria continental margin, with an overall NE direction of tectonic transport. These units consist of a Cretaceous-Oligocene matrix, which includes blocks of continental-type rocks and ophiolites with remnants of their original Upper Jurassic to Lower Cretaceous pelagic cover. The innermost portion of the accretionary wedge is represented by a polymetamorphosed and polydeformed tectonic units that underwent a Late Oligocene high pressure/low temperature (HP/LT) metamorphism. The northern Calabria ophiolitic-belt is indeed composed of west-verging tectonic slices of oceanic rocks which, embedded between platform carbonate units of a western continental margin at the bottom and the basement crystalline nappes of the Calabrian Arc at the top, are affected by a Late Eocene-Early Oligocene HP/LT metamorphism. The main tectonic features of these two suture zones suggest that they can be interpreted as the result of the closure of two branches of the western Neotethys separated by a continental block that includes the crystalline basement rocks of the Calabrian Arc. We thus suggest that the north-east verging southern Apennine suture constituted by a well-developed accretionary wedge is the result of the closure of a large Late Jurassic-Early Cretaceous oceanic domain (the Ligurian Ocean) located between the African (the Adria Block) and European continental margins. The northern Calabria suture derives indeed from the deformation of a very narrow oceanic-floored basin developed during the Mesozoic rifting stages within the European margin separating a small continental ribbon (Calabrian Block) from the main continent. Copyright © 2008 John Wiley & Sons, Ltd. [source]

    Stratigraphic and structural evolution of the Blue Nile Basin, Northwestern Ethiopian Plateau

    GEOLOGICAL JOURNAL, Issue 1 2009
    N. DS.
    Abstract The Blue Nile Basin, situated in the Northwestern Ethiopian Plateau, contains ,1400,m thick Mesozoic sedimentary section underlain by Neoproterozoic basement rocks and overlain by Early,Late Oligocene and Quaternary volcanic rocks. This study outlines the stratigraphic and structural evolution of the Blue Nile Basin based on field and remote sensing studies along the Gorge of the Nile. The Blue Nile Basin has evolved in three main phases: (1) pre-sedimentation phase, include pre-rift peneplanation of the Neoproterozoic basement rocks, possibly during Palaeozoic time; (2) sedimentation phase from Triassic to Early Cretaceous, including: (a) Triassic,Early Jurassic fluvial sedimentation (Lower Sandstone, ,300,m thick); (b) Early Jurassic marine transgression (glauconitic sandy mudstone, ,30,m thick); (c) Early,Middle Jurassic deepening of the basin (Lower Limestone, ,450,m thick); (d) desiccation of the basin and deposition of Early,Middle Jurassic gypsum; (e) Middle,Late Jurassic marine transgression (Upper Limestone, ,400,m thick); (f) Late Jurassic,Early Cretaceous basin-uplift and marine regression (alluvial/fluvial Upper Sandstone, ,280,m thick); (3) the post-sedimentation phase, including Early,Late Oligocene eruption of 500,2000,m thick Lower volcanic rocks, related to the Afar Mantle Plume and emplacement of ,300,m thick Quaternary Upper volcanic rocks. The Mesozoic to Cenozoic units were deposited during extension attributed to Triassic,Cretaceous NE,SW-directed extension related to the Mesozoic rifting of Gondwana. The Blue Nile Basin was formed as a NW-trending rift, within which much of the Mesozoic clastic and marine sediments were deposited. This was followed by Late Miocene NW,SE-directed extension related to the Main Ethiopian Rift that formed NE-trending faults, affecting Lower volcanic rocks and the upper part of the Mesozoic section. The region was subsequently affected by Quaternary E,W and NNE,SSW-directed extensions related to oblique opening of the Main Ethiopian Rift and development of E-trending transverse faults, as well as NE,SW-directed extension in southern Afar (related to northeastward separation of the Arabian Plate from the African Plate) and E,W-directed extensions in western Afar (related to the stepping of the Red Sea axis into Afar). These Quaternary stress regimes resulted in the development of N-, ESE- and NW-trending extensional structures within the Blue Nile Basin. Copyright © 2008 John Wiley & Sons, Ltd. [source]

    Mantle-derived and crustal melts dichotomy in northern Greece: spatiotemporal and geodynamic implications

    GEOLOGICAL JOURNAL, Issue 1 2004
    Diego Perugini
    Abstract Two distinct groups of subduction-related (orogenic) granitoid rocks, one Jurassic and the other Tertiary, occur in the area between the Vardar (Axios) Zone and the Rhodope Massif in northern Greece. The two groups of granitoids differ in many respects. The first group shows evolved geochemical characters, it is not associated with mafic facies, and evidence of magmatic interaction between mantle- and crustal-derived melts is lacking. The second group has less evolved geochemical characters, it is associated with larger amount of mafic facies, and magmatic interaction processes between mantle-derived and crustal melts are ubiquitous as evidenced by mafic microgranular enclaves and synplutonic dykes showing different enrichment in K2O, Ti, and incompatible elements. This kind of magmatism can be attributed to the complex geodynamic evolution of the area. In particular, we suggest that two successive subduction events related to the closure of the Vardar and the Pindos oceans, respectively, occurred in the investigated area from Late Jurassic to Tertiary. We relate the genesis of Jurassic granitoids to the first subduction event, whereas Tertiary granitoids are associated with the second subduction. Fluids released by the two subducted slabs induced metasomatic processes generating a ,leopard skin' mantle wedge able to produce mafic melts ranging from typical calc-alkaline to ultra-potassic. Such melts interacted in various amounts with crustal calc-alkaline anatectic melts to generate the wide spectrum of Tertiary granitoids occurring in the study area. Copyright © 2004 John Wiley & Sons, Ltd. [source]

    Palaeomagnetic evidence for the Gondwanian origin of the Taurides and rotation of the Isparta Angle, southern Turkey

    GEOLOGICAL JOURNAL, Issue 4 2002
    John D. A. Piper
    Abstract The Taurides, the southernmost of the three major tectonic domains that constitute present-day Turkey, were emplaced following consumption of the Tethyan Ocean in Late Mesozoic to mid-Tertiary times. They are generally assigned an origin at the northern perimeter of Gondwana. To refine palaeogeographic control we have investigated the palaeomagnetism of a range of Jurassic rocks. Forty-nine samples of Upper Jurassic limestones preserve a dual polarity remanence (D/I=303/,9°, ,95=6°) interpreted as a primary magnetization acquired close to the equator and rotated during emplacement of the Taurides. Result from mid-Jurassic dolerites confirm a low palaeolatitude for the Tauride Platform during Jurassic times at the Afro,Arabian sector of Gondwana. Approximately 4000,km of Tethyan closure subsequently occurred between Late Jurassic and Eocene times. Although related Upper Jurassic limestones and Liassic redbeds preserve a sporadic record of similar remanence, the dominant signature in these latter rocks is an overprint of probable mid-Miocene age, probably acquired during a single polarity chron and imparted by migration of a fluid front during nappe loading. This is now rotated consistently anticlockwise by c. 30° and conforms to results of previous studies recording bulk Neogene rotation of the Isparta region following Lycian nappe emplacement. The regional distribution of this overprint implies that the Isparta Angle (IA) has been subject to only small additional closure (<10°) since Late Miocene time. A smaller amount (c. 6°) of clockwise rotation within the IA since Early Pliocene times is associated with an ongoing extensional regime and reflects an expanding curvature of the Tauride arc produced by southwestward extrusion of the Anatolian collage as a result of continuing northward motion of Afro,Arabia. Copyright © 2002 John Wiley & Sons, Ltd. [source]

    Carbon and oxygen isotopes: a tool for Jurassic and early Cretaceous pelagic correlation (southern Spain)

    GEOLOGICAL JOURNAL, Issue 4 2002
    J. Rey
    Abstract The isotopic evolution of ,13C and ,18O is reported for the Jurassic and early Cretaceous in two pelagic sections of the External Zones in the Betic Cordilleras (SE Spain). Stable isotope curves from pelagic trough and swell sections display similar patterns. Variations in ,18O and ,13C values from strata at equivalent age probably reflect both early diagenetic cementation and later temperature-related burial diagenesis. Comparison of global isotope curves with those presented in this work allows the differentiation of global from local events. Thus, the anoxic event during the early Toarcian (falciferum Zone) is characterized by elevated ,13C and depressed ,18O values. The isotopic record also allows the detection of the middle Oxfordian transgression. There are other peaks for the late Toarcian, early Bajocian, Callovian and early Berriasian that can also be used as tools for correlation purposes. Copyright © 2002 John Wiley & Sons, Ltd. [source]

    Mesozoic,Paleogene sedimentary facies and paleogeography of Tibet, western China: tectonic implications

    GEOLOGICAL JOURNAL, Issue 3 2002
    Kai-Jun Zhang
    Abstract In Early,Middle Triassic time, an abyssal sea covered most of the Songpan,Ganzi area, whereas a Central Tibetan Landmass, up to 400,km wide, may have stretched across the Lhasa and Western Qiangtang terrains. In Late Triassic time, the Songpan,Ganzi sea closed, the Central Tibetan Landmass receded westwards away from southern Western Qiangtang, a littoral environment dominated Eastern Qiangtang, middle Western Qiangtang, and southeastern Lhasa, a shelf environment existed only in northern and southeastern Western Qiangtang and northwestern Eastern Qiangtang, and abyssal flysch was spread along the eastern Bangonghu,Nüjiang zone. In Early,Middle Jurassic time, Songpan,Ganzi had become part of the Eurasian continent, abyssal flysch sediments stretched throughout the Bangonghu,Nüjiang zone, the Central Tibetan Landmass was only locally present in southwestern Lhasa, and the Tethyan epicontinental sea nearly covered all Tibet southwest of the Jinsajiang suture. In Late Jurassic time, oceanic flysch deposition existed only along the westernmost Bangonghu,Nüjiang zone, nearly all of Tibet was covered by coastal deposits, and shelf deposits existed only in northern Western Qiangtang and westernmost Lhasa. In the early stage of Early Cretaceous time, the majority of Qiangtang had become dry land, and a supralittoral environment dominated across the entire Lhasa terrain. However, during the late stage of the Early Cretaceous time, platform,shelf carbonates prevailed on southern Western Qiangtang and northern Lhasa. In Late Cretaceous time, the majority of Qiangtang had become emergent land, and a supratidal environment dominated Lhasa, the western rim of Western Qiangtang, and Tarim. In Paleogene time, the majority of Tibet became emergent land, and a supratidal environment existed only on the southern and western rims. The dominance of Upper Triassic,Jurassic shelf carbonates on the northwestern Eastern Qiangtang corner and the northern Western Qiangtang rim suggests a diachronous closing of the Jinsajiang paleo-Tethys ocean, first during latest Triassic time when the Eastern Qiangtang terrain collided with Asia and finally in Jurassic time when the Western Qiangtang terrain was amalgamated to Asia. Rich picotites in Upper Triassic sandstones of middle Qiangtang suggest that the Shuanghu suture could have extended along the middle of Qiangtang, and stable shelf sedimentation during Late Triassic,Middle Jurassic time in the Western Qiangtang terrain shows that the suture probably could not have formed until Middle Jurassic time. The opening time of the Bangonghu,Nüjiang mid-Tethys ocean could be Late Triassic time due to the existence of the Central Tibetan Landmass across Western Qiangtang and Lhasa during Early,Middle Triassic time. However, its opening was diachronous, at Late Triassic time in the east and at Early,Middle Jurassic time in the west. Furthermore, its closing was also diachronous, first in the east at the beginning of Late Jurassic time and later in the west in latest Jurassic to earliest Cretaceous time. Widespread upper Lower Cretaceous limestone up to 5,km thick over the northern half of Lhasa indicates that southern Tibet could have undergone an extensive backarc subsidence during late Early Cretaceous time. Continuous shallow marine sedimentation through the entire Cretaceous time over much of southern Tibet indicates that southern Tibet was intensely elevated only after the end of Paleogene time, its high topography being the product of the Indo-Asian collision. Copyright © 2002 John Wiley & Sons, Ltd. [source]

    The Cretaceous volcanic succession around the Songliao Basin, NE China: relationship between volcanism and sedimentation

    GEOLOGICAL JOURNAL, Issue 2 2002
    Pujun Wang
    Abstract With volume ratio of 8:1:1.5 amongst acidic, intermediate and basaltic rocks, the Cretaceous volcanics around the Songliao Basin are a series of high-K or medium-K, peraluminous or metaluminous, calc-alkaline rocks, lacking typical basalts and peralkaline members of typical rift-related types. Their eruption ages range between 133 and 127,Ma, 124 and 122,Ma and 117 and 113,Ma respectively. They are high in total (Rare earth element) REE contents (96.1,326,ppm), enriched in LREE and depleted in HREE (LREE/HREE,=,4.6,13.8), with negative Eu and Ce anomalies (Eu/Eu*,=,0.04,0.88; Ce/Ce*,=,0.60,0.97). They have enriched large-ion lithophile elements (e.g. K, Ba, Th) and depleted high field strength elements (e.g. Nb, Ti and Y), suggesting a subduction-related tectonic setting. The volcanic activities migrated from south to north, forming a successively northward-stepping volcanic series and showing a feature significantly different from the overlying sedimentary sequence striking northeast. Thus, an overlap basin model was proposed. Accompanied by opening of the basin, the volcanogenic succession was formed at the block-faulting stage (131,113,Ma) owing to the closure of the Mongolia,Okhotsk ocean in the Jurassic and early Cretaceous, while the overlying sedimentary sequence was unconformably deposited at the spreading stage (Albian,Maastrichtian) owing to the oblique subduction of the Pacific plate under the Eurasian plate. The volcanic succession constitutes the lower unit of basin filling and is the forerunner of further basin spreading. Copyright © 2002 John Wiley & Sons, Ltd. [source]

    Palaeoclimate indicators (clay minerals, calcareous nannofossils, stable isotopes) compared from two successions in the late Jurassic of the Volga Basin (SE Russia)

    GEOLOGICAL JOURNAL, Issue 1 2002
    A. H. Ruffell
    Abstract A study of clay mineral and calcareous nannofossil abundances in late Jurassic,early Cretaceous sediments from the Volga Basin, SE Russia, is presented. From these results, we are able to compare some general patterns of mineralogical and palaeontological change for the Volga Basin to the palaeoclimate models developed for northern Europe and beyond. The two successions examined comprise calcareous mudstones with black organic-rich shale horizons, overlain by a series of phosphatic silty sands. Clay mineralogical results show a progressive decrease in kaolinite and the concomitant increase of smectite and illite through the middle Volgian, followed by an abrupt increase in kaolinite in the late Volgian. The clay mineral evidence suggests increasing aridity at the end of the Jurassic, similar, in part, to many western European successions. Because of differential settling of clay minerals, superimposed upon this possible climatic signature is likely to be the effect of relative sea-level change. Calcareous nannofossil analysis from a single section reveals a shift through the middle Volgian from low nutrient, warm water assemblages dominated by Watznaueria to cooler surface water and high nutrient assemblages dominated by Biscutum constans. These observations suggest that increased aridity is also associated with climatic cooling. Black shales are associated with increased productivity, higher sea levels and increases in smectite content. Hence, periods of low (chemical) hinterland weathering during semi-arid conditions are paradoxically associated with relatively nutrient-rich waters, and organic-rich shales. Comparison of published carbon and oxygen stable isotope results from this and other sections to the clay mineral and nannofossil data confirms the palaeoclimatic interpretation. This study significantly improves the published biostratigraphically constrained clay mineral database for this time period, because other European and North American successions are either non-marine (and thus poorly dated), absent (through penecontemporaneous erosion) or condensed. Copyright © 2002 John Wiley & Sons, Ltd. [source]

    Revised Pacific M-anomaly geomagnetic polarity timescale

    Masako Tominaga
    SUMMARY The current M-anomaly geomagnetic polarity timescale (GPTS) is mainly based on the Hawaiian magnetic lineations in the Pacific Ocean. M-anomaly GPTS studies to date have relied on a small number of magnetic profiles, a situation that is not ideal because any one profile contains an uncertain amount of geologic ,noise' that perturbs the magnetic field signal. Compiling a polarity sequence from a larger array of magnetic profiles is desirable to provide greater consistency and repeatability. We present a new compilation of the M-anomaly GPTS constructed from polarity models derived from magnetic profiles crossing the three lineation sets (Hawaiian, Japanese and Phoenix) in the western Pacific. Polarity reversal boundary locations were estimated with a combination of inverse and forward modelling of the magnetic profiles. Separate GPTS were established for each of the three Pacific lineation sets, to allow examination of variability among the different lineation sets, and these were also combined to give a composite timescale. Owing to a paucity of reliable direct dates of the M-anomalies on ocean crust, the composite model was time calibrated with only two ages; one at each end of the sequence. These two dates are 125.0 Ma for the base of M0r and 155.7 Ma for the base of M26r. Relative polarity block widths from the three lineation sets are similar, indicating a consistent Pacific-wide spreading regime. The new GPTS model shows slightly different spacings of polarity blocks, as compared with previous GPTS, with less variation in block width. It appears that the greater polarity chron irregularity in older models is mostly an artifact of modelling a small number of magnetic profiles. The greater averaging of polarity chron boundaries in our model gives a GPTS that is statistically more robust than prior GPTS models and a superior foundation for Late Jurassic,Early Cretaceous geomagnetic and chronologic studies. [source]

    Tectonic deformation of the Indochina Peninsula recorded in the Mesozoic palaeomagnetic results

    Kazuhiro Takemoto
    SUMMARY In order to describe features of tectonic deformation in the Indochina Peninsula, Early Jurassic to Early Cretaceous red sandstones were sampled at three localities in the Shan-Thai and Indochina blocks. Stepwise thermal treatment of most samples revealed the presence of characteristic remanent magnetization, which is generally unblocked by 680 °C. This component from Phong Saly (21.6°N, 101.9°E) and Borikhanxay (18.5°N, 103.8°E) localities yield positive fold tests with Late Jurassic,Early Cretaceous directions of Dec/Inc = 28.8°/32.1° (ks= 15.4, ,95= 8.8°, N= 22) and Dec/Inc = 42.1°/46.9° (ks= 20.1, ,95= 7.9°, N= 18), respectively. Additionally, a syn-folding mid-Cretaceous characteristic magnetization is observed in the samples of Muang Phin locality (16.5°N, 106.1°E), which gave a mean direction of Dec/Inc = 30.8°/39.9°, k= 102.6, ,95= 3.0°, N= 23. This reliable Late Jurassic to Mid-Cretaceous palaeomagnetic directions from three different localities are incorporated into a palaeomagnetic database for Shan-Thai and Indochina blocks. Based on these compilations, tectonic deformation of the Shan-Thai and Indochina blocks is summarized as follows: (1) the Shan-Thai and Indochina blocks experienced a clockwise rotation of about 10° as a composite unit in the early stage of India,Asia collision and (2) following this, the Shan-Thai Block underwent an internal tectonic deformation, whereas the Indochina Block behaved as a rigid tectonic unit during the same period. Comparison of our palaeomagnetic results with seismic tomographic images suggests that the strength of continental lithosphere beneath these blocks played an important role in the process of deformation rather than any other tectonic regime. In contrast to the Shan-Thai Block, an existence of continental roots beneath the Indochina Block prevented its internal deformation. [source]

    Palaeomagnetism, rock magnetism and geochemistry of Jurassic dykes and correlative redbeds, Massachusetts, USA

    Suzanne A. McEnroe
    Jurassic diabase dykes, sills and sedimentary rocks in central Massachusetts were sampled for palaeomagnetic analysis. The intrusions fall into three of the chemical types for eastern North American diabases: high TiO2 quartz-normative (Holden); low TiO2 quartz-normative (Ware); and high Fe2O3 quartz-normative (Pelham,Loudville). The characteristic magnetizations in the majority of intrusive samples unblock between 550 °C and 580 °C, with Curie temperatures in a discrete interval between 556 °C and 580 °C. The dominant remanence in the diabases is carried by C1 to C3 oxidation-exsolved titanomagnetite occurring as euhedral grains, as fine needles or dust in the matrix, as devitrifed glass, and as fine magnetite-ilmenite-silicate symplectite. In some dykes, titanomagnetite was further modified by deuteric oxidation during post-magmatic cooling, creating titanomaghematite and/or a granulation of the magnetite. Palaeopoles for the three diabase groups are: Holden, 60.1°N, 80.5°E, A95 = 4.1°; Ware, 73.5°N, 85.8°E, A95 = 3.9°; and Pelham,Loudville, 65.3°N, 95.6°E, A95 = 4.1°. These data are combined with samples from two stratigraphic sections through the Early Jurassic part of the Sugarloaf Formation in the Deerfield Basin representing both fine-grained mudstones and coarser arkoses. These haematite-dominated rocks reveal several components of magnetization, a steep recent field direction, an intermediate secondary diagenetic overprint direction in both mudstones and arkoses, and a high-temperature shallow primary direction found only in the mudstones. Palaeopoles for the Sugarloaf Formation are: mudstones, 57.7°N, 81.3°E, A95 = 9.1°; and arkoses, 75.1°N, 131.6°E, A95 = 5.9°. Based on the new palaeomagnetic data reported here, the North American plate in the Middle Jurassic was at higher palaeolatitudes than indicated by the present North American apparent polar wander path. [source]

    Climate change and grasslands through the ages: an overview

    GRASS & FORAGE SCIENCE, Issue 2 2007
    L. 't Mannetje
    Summary Change from cool to warm temperatures and vice versa have occurred throughout geological time. During the Jurassic and Cretaceous periods (206,65 million years ago, Ma) the climate was more uniformly warm and moist than at present and tropical rainforests were widespread. Grasses evolved during the Jurassic period and they expanded greatly as the climate differentiated with reduced rainfall and temperatures. C4 -grasses probably arose during the Oligocene period (24,35 Ma). During the Miocene period (23·8,5·3 Ma) grasslands expanded into huge areas (e.g. prairies in the USA, steppe in Eurasia, and pampas and llanos in South America). During the Quaternary period (1·8 Ma till now) some twenty-two different ice ages with periodicities of about 100 000 years occurred. Eighteen-thousand years ago, north-western Europe had a polar climate with tundra vegetation and the Mediterranean region was covered by steppe. During that time Amazonia was so dry that it was covered in extensive areas of savanna and the Sahara expanded rapidly. Only in the last 10 000 years has a closed rainforest covered the Amazonian region again. However, 9000 years ago a brief period of global warming caused excessive rains, which caused the sea and river levels to rise in north-western Europe with tremendous loss of life. The present period of extreme dryness in the Sahara only started some 5000 years ago and then the desert expanded rapidly into the Sahel. Before that the Sahara was covered by steppe. Global warming took place between about ad 900 and about ad 1200 or 1300 just before the Little Ice Age (1550,1700 ad). The article concludes with a description of temperature and vegetation changes that are occurring in Europe at present. It is predicted that C4 -grasses, which are already present in southern Europe, will further expand but that, in the short term, land abandonment will have much more deleterious effects than temperature change due to increased wild fires, loss of biodiversity and desertification. [source]

    The geochemical characteristics of the Paraná River suspended sediment load: an initial assessment

    Pedro J. Depetris
    Abstract Most water in the Paraná River drainage basin is supplied by the tropical Upper Paraná (over 60% of the total annual water discharge, 550 km3). The total suspended solids (TSS) load (c. 80 × 106 t year,1), however, is essentially furnished (50,70%) by the mountainous, arid and mostly sediment-mantled upper Bermejo River drainage basin. This characteristic suggests that the Paraná River solid load (TSS, 600 km upstream from the mouth) is largely recycled sedimentary material, whose discharge-weighted mean chemical index of alteration is c. 71. The extended UCC-normalized multi-elemental diagrams are similar to those of other world rivers. Nevertheless, the detailed inspection of UCC-normalized rare earth element (REE) ,spidergrams' reveals a lithological source for the Paraná River TSS that might be compatible with either tholeiitic flood basalts (widespread in the upper drainage) or with young Andean intermediate volcanic rocks. In view of the Bermejo River's dominant role as a sediment contributor, we feel that the signature preserved in the Paraná's TSS is the latter. Conversely, the Uruguay River TSS REE signature is certainly determined by the extensive weathering products of Jurassic,Cretaceous tholeiitic basalts. Copyright © 2003 John Wiley & Sons, Ltd. [source]

    The influence of hydroelectrical development on the flow regime of the karstic river Cetina

    Ognjen Bonacci
    Abstract The Cetina River is a typical karst watercourse in the deep and well-developed Dinaric karst. The total length of the Cetina River open streamflow from its spring to the mouth is about 105 km. Estimated mean annual rainfall is 1380 mm. The Cetina catchment is built of Triassic, Jurassic, and Cretaceous carbonate strata. The western part of the catchment by the Cetina River is referred to as the ,direct' or topographic catchment. It was defined based on surface morphologic forms, by connection between mountain chain peaks. This part of the catchment is almost entirely situated in the Republic of Croatia. The eastern part of the catchment is referred to as the ,indirect' catchment, and is mainly situated in Bosnia-Herzegovina. Water from the ,indirect' catchment emerges from the western ,direct' catchment in numerous permanent and temporary karst springs. Since 1960, numerous hydrotechnical works have been carried out on the Cetina River and within its catchment. Five hydroelectric power plants (HEPPs), five reservoirs, and three long tunnels and pipelines have been built. Their operation has significantly altered the natural hydrological regime. The Cetina River is divided into two hydrological reaches. In the 65 km upstream, the hydrological regime was redistributed within the year: low flows had increased and high flows had decreased, although the mean annual discharge remained the same. Part of the Cetina watercourse downstream from the Pran,evi,i Reservoir lost the majority of its flow. The mean annual discharges dropped from 100 m3 s,1 to less than 10 m3 s,1 because of the Zaku,ac HEPP development. Copyright © 2003 John Wiley & Sons, Ltd. [source]

    Discovery of Jurassic ammonoids from the Shyok suture zone to the northeast of Chang La Pass, Ladakh, northwest India and its tectonic significance

    ISLAND ARC, Issue 1 2007
    Masayuki Ehiro
    Abstract Callovian (late Middle Jurassic) ammonoids Macrocephalites and Jeanneticeras were recovered from the Shyok suture zone, northeast of Chang La Pass, Ladakh, northwest India. They are the first reliable Jurassic fossils and the oldest chronologic data from the Shyok suture zone. The ammonoid-bearing Jurassic strata, newly defined as the Tsoltak Formation, consist largely of terrigenous mudstone with thin sandstone beds and were probably a part of the continental basement to the Cretaceous Ladakh Arc. [source]

    Zircon U,Pb ages and tectonic implications of ,Early Paleozoic' granitoids at Yanbian, Jilin Province, northeast China

    ISLAND ARC, Issue 4 2004
    Yanbin Zhang
    Abstract The Yanbian area is located in the eastern part of the Central Asian Orogenic Belt (CAOB) of China and is characterized by widespread Phanerozoic granitic intrusions. It was previously thought that the Yanbian granitoids were mainly emplaced in the Early Paleozoic (so-called ,Caledonian' granitoids), extending east,west along the northern margin of the North China craton. However, few of them have been precisely dated; therefore, five typical ,Caledonian' granitic intrusions (the Huangniling, Dakai, Mengshan, Gaoling and Bailiping batholiths) were selected for U,Pb zircon isotopic study. New-age data show that emplacement of these granitoids extended from the Late Paleozoic to Late Mesozoic (285,116 Ma). This indicates that no ,Caledonian' granitic belt exists along the northern margin of the North China craton. The granitoids can be subdivided into four episodes based on our new data: Early Permian (285 ± 9 Ma), Early Triassic (249,245 Ma), Jurassic (192,168 Ma) and Cretaceous (119,116 Ma). The 285 ± 9 Ma tonalite was most likely related to subduction of the Paleo-Asian Oceanic Plate beneath the North China craton, followed by Triassic (249,245 Ma) syn-collisional monzogranites, representing the collision of the CAOB orogenic collage with the North China craton and final closure of the Paleo-Asian Ocean. The Jurassic granitoids resulted from subduction of the Paleo-Pacific plate and subsequent collision of the Jiamusi,Khanka Massif with the existing continent, assembled in the Triassic. The Early Cretaceous granitoids formed in an extensional setting along the eastern Asian continental margin. [source]

    Metamorphism and metamorphic K,Ar ages of the Mesozoic accretionary complex in Northland, New Zealand

    ISLAND ARC, Issue 3 2004
    Yujiro Nishimura
    Abstract A southwest dipping Mesozoic accretionary complex, which consists of tectonically imbricated turbiditic mudstone and sandstone, hemipelagic siliceous mudstone, and bedded cherts and basaltic rocks of pelagic origin, is exposed in northern North Island, New Zealand. Interpillow limestone is sometimes contained in the basaltic rocks. The grade of subduction-related metamorphism increases from northeast to southwest, indicating an inverted metamorphic gradient dip. Three metamorphic facies are recognized largely on the basis of mineral parageneses in sedimentary and basaltic rocks: zeolite, prehnite-pumpellyite and pumpellyite-actinolite. From the apparent interplanar spacing d002 data for carbonaceous material, which range from 3.642 to 3.564 Å, the highest grade of metamorphism is considered to have attained only the lowermost grade of the pumpellyite-actinolite facies for which the highest temperature may be approximately 300°C. Metamorphic white mica K,Ar ages are reported for magnetic separates and <2 µm hydraulic elutriation separates from 27 pelitic and semipelitic samples. The age data obtained from elutriation separates are approximately 8 m.y. younger, on average, than those from magnetic separates. The age difference is attributed to the possible admixture of nonequilibrated detrital white mica in the magnetic separates, and the age of the elutriation separates is considered to be the age of metamorphism. If the concept, based on fossil evidence, of the subdivision of the Northland accretionary complex into north and south units is accepted, then the peak age of metamorphism in the north unit is likely to be 180,130 Ma; that is, earliest Middle Jurassic to early Early Cretaceous, whereas that in the south unit is 150,130 Ma; that is, late Late Jurassic to early Early Cretaceous. The age cluster for the north unit correlates with that of the Chrystalls Beach,Taieri Mouth section (uncertain terrane), while the age cluster for the south unit is older than that of the Younger Torlesse Subterrane in the Wellington area, and may be comparable with that of the Nelson and Marlborough areas (Caples and Waipapa terranes). [source]

    Jurassic depositional records and sandstone provenances in Hefei Basin, central China: Implication for Dabie orogenesis

    ISLAND ARC, Issue 2 2004
    Zhong Li
    Abstract Detrital composition and major element geochemistry of Jurassic sandstones in the south Hefei Basin, central China, show their provenance to be the Dabie Mountains, whose tectonic attributes are closely related to continent,island arc complexes. It was found that a provenance change, from recycled orogen signatures and mixed orogenic sandstones to arc orogen, occurs from the lower Middle Jurassic to the Upper Jurassic (the Zhougongshan Formation). Dissected magmatic arc sources were gradually exposed in the Dabie Mountains due to intensive exhumation during the Late Jurassic, particularly after the Fenghuangtai depositional phase. Furthermore, it can be infered that the magmatic arc was initially present in both the Early Paleozoic and the Triassic, according to isotopic dating studies in previously published reports. ,13C,,18O tracing between existing marbles of different strata in the Dabie block and marble gravels of the Fenghuangtai Formation in the Hefei Basin indicate that partial lithostratigraphic units for the Jurassic provenances have entirely disappeared from the Dabie block; therefore, it is impossible to reconstruct integral orogenic processes from studies on the remaining Dabie block alone. These findings, together with basin-fill sequences, also suggest that the Hefei Basin was mainly subjected to compressive mechanical regimes rather than extensional regimes in the Jurassic, which resulted in reverse-grading clastic depositional sequences, and is probably related to the northward intracontinental deep subduction of the Yangtze Plate. Regional exhumation properties and a tectonic model of the Late Mesozoic Dabie orogenesis are discussed in this paper. [source]

    Debris flow and slide deposits at the top of the Internal Liguride ophiolitic sequence, Northern Apennines, Italy: A record of frontal tectonic erosion in a fossil accretionary wedge

    ISLAND ARC, Issue 1 2001
    Michele Marroni
    Abstract In the Northern Apennines, the Internal Liguride units are characterized by an ophiolite sequence that represents the stratigraphic base of a late Jurassic,early Paleocene sedimentary cover. The Bocco Shale represents the youngest deposit recognized in the sedimentary cover of the ophiolite and can be subdivided into two different groups of deep sea sediments. The first group is represented by slide, debris flow and high density turbidity current-derived deposits, whereas the second group consists of thin-bedded turbidites. Facies analysis and provenance studies indicate, for the former group, small and scarcely evoluted flows that rework an oceanic lithosphere and its sedimentary cover. We interpret the Bocco Shale as an ancient example of a deposit related to the frontal tectonic erosion of the accretionary wedge slope. The frontal tectonic erosion resulted in a large removal of materials, from the accretionary wedge front, that was reworked as debris flows and slide deposits sedimented on the lower plate above the trench deposits. The frontal tectonic erosion was probably connected with subduction of oceanic crust characterized by positive topographic relief. This interpretation can be also applied for the origin of analogous deposits of Western Alps and Corsica. [source]

    Continental basalts in the accretionary complexes of the South-west Japan Arc: Constraints from geochemical and Sr and Nd isotopic data of metadiabase

    ISLAND ARC, Issue 1 2000
    Hiroo Kagami
    Abstract The Ryoke Belt is one of the important terranes in the South-west Japan Arc (SJA). It consists mainly of late Cretaceous granitoid rocks, meta-sedimentary rocks (Jurassic accretionary complexes) and mafic rocks (gabbros, metadiabases; late Permian,early Jurassic). Initial ,Sr (+ 25, + 59) and ,Nd (, 2.1,,5.9) values of the metadiabases cannot be explained by crustal contamination but reflect the values of the source material. These values coincide with those of island arc basalt (IAB), active continental margin basalt (ACMB) and continental flood basalt (CFB). Spiderdiagrams and trace element chemistries of the metadiabases have CFB-signature, rather than those of either IAB or ACMB. The Sr,Nd isotope data, trace element and rare earth element chemistries of the metadiabases indicate that they result from partial melting of continental-type lithospheric mantle. Mafic granulite xenoliths in middle Miocene volcanic rocks distributed throughout the Ryoke Belt were probably derived from relatively deep crust. Their geochemical and Sr,Nd isotopic characteristics are similar to the metadiabases. This suggests that rocks, equivalent geochemically to the metadiabases, must be widely distributed at relatively deep crustal levels beneath a part of the Ryoke Belt. The geochemical and isotopic features of the metadiabases and mafic granulites from the Ryoke Belt are quite different from those of mafic rocks from other terranes in the SJA. These results imply that the Ryoke mafic rocks (metadiabase, mafic granulite) were not transported from other terranes by crustal movement but formed in situ. Sr,Nd isotopic features of late Cretaceous granitoid rocks occurring in the western part of the Japanese Islands are coincident with those of the Ryoke mafic rocks. Such an isotopic relation between these two rocks suggests that a continental-type lithosphere is widely represented beneath the western part of the Japanese Islands. [source]