Angular Range (angular + range)

Distribution by Scientific Domains


Selected Abstracts


Symmetrization of diffraction peak profiles measured with a high-resolution synchrotron X-ray powder diffractometer

JOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 1 2006
H. Hibino
The asymmetry of diffraction peak profiles observed with a high-resolution synchrotron powder X-ray diffractometer has been successfully removed by a double deconvolution method. In the first step, the asymmetry caused by the axial divergence aberration of the diffractometer is removed by a whole-pattern deconvolution method based on an a priori theoretical model for the aberration. In the second step, the residual asymmetry, the origin of which can be ascribed to the aberrations of the beamline optics, is also removed by a whole-pattern deconvolution method, based on an empirical model derived from the analysis of experimental diffraction peak profiles of a standard Si powder (NIST SRM640b). The beamline aberration has been modelled by the convolution of a pseudo-Voigt or Voigt function with an exponential distribution function. It has been found that the angular dependence of the asymmetry parameter in the exponential function is almost proportional to tan,, which supports the idea that the residual asymmetry should be ascribed mainly to the intrinsic asymmetry in the spectroscopic distribution of the source X-ray supplied by the beamline optics of the synchrotron facility. Recently developed procedures of whole-pattern deconvolution have been improved to treat the singularity of the instrumental function in the measured angular range. Formulae for the whole-pattern deconvolution based on the Williamson,Hall-type dependence of the width parameter of the instrumental function have also been developed. The method was applied to the diffraction intensity data of a standard ZnO powder sample (NIST SRM674) measured with a high-resolution powder diffractometer on beamline BL4B2 at the Photon Factory. The structure parameters of ZnO were refined from the integrated peak intensities, which were extracted by an individual profile fitting method applying symmetric profile models. The refined structure parameters coincide fairly well with those obtained from single-crystal data. [source]


Beam-size effects in radiation damage in insulin and thaumatin crystals

JOURNAL OF SYNCHROTRON RADIATION, Issue 3 2005
A. Wagner
Cryocooled insulin and thaumatin crystals were irradiated in a series of alternating data collections and high-dose-rate exposures using either a vertically focused or vertically defocused beam. The main result is that the radiation damage is limited to the exposed region, which can be explained by the short range of the photoelectrons and the Auger electron cascade produced by light elements. Consequently, the unexposed angular range provides significantly improved data quality and electron density compared with previously exposed angular wedges of the crystal when a vertically focused beam is used, while no differences are observed between a fresh wedge and an exposed region for the vertically defocused beam. On the other hand, the focused beam provides higher I/,I ratios at high resolution than homogeneous sample illumination but also causes more rapid sample deterioration. [source]


Directional and band-gap behavior of periodic auxetic lattices

PHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 3 2005
M. Ruzzene
Abstract The paper investigates the wave propagation characteristics of periodic two dimensional, auxetic lattice structures. Periodic structures in general feature unique wave propagation characteristics, whereby waves are allowed to propagate only within specific frequency bands. Two dimensional periodic structures complement this feature with a low frequency directional behavior. The combination of these unique characteristics makes two dimensional periodic structures ideal candidates for the design of pass-band directional mechanical filters. Focus is here placed on honeycomb lattice configurations. A sensitivity analysis is first presented to investigate the influence of band-gap and directional behaviors with respect to changes in the internal angle. The presented results demonstrate how re-entrant topologies feature enhanced wave attenuation capabilities with respect to hexagonal lay-outs. An optimization problem is then formulated by considering the internal angle as a design variable, and the width of the attenuation frequency ranges and angular range of propagation at low frequencies as objective functions. The identified optimal configurations feature combined properties which demonstrate the effectiveness of the analysis procedure. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


PRIMUS: a Windows PC-based system for small-angle scattering data analysis

JOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 5 2003
Petr V. Konarev
A program suite for one-dimensional small-angle scattering data processing running on IBM-compatible PCs under Windows 9x/NT/2000/XP is presented. The main program, PRIMUS, has a menu-driven graphical user interface calling computational modules to perform data manipulation and analysis. Experimental data in binary OTOKO format can be reduced by calling the program SAPOKO, which includes statistical analysis of time frames, averaging and scaling. Tools to generate the angular axis and detector response files from diffraction patterns of calibration samples, as well as binary to ASCII transformation programs, are available. Several types of ASCII files can be directly imported into PRIMUS, in particular, sasCIF or ILL-type files are read without modification. PRIMUS provides basic data manipulation functions (averaging, background subtraction, merging of data measured in different angular ranges, extrapolation to zero sample concentration, etc.) and computes invariants from Guinier and Porod plots. Several external modules coupled with PRIMUSvia pop-up menus enable the user to evaluate the characteristic functions by indirect Fourier transformation, to perform peak analysis for partially ordered systems and to find shape approximations in terms of three-parametric geometrical bodies. For the analysis of mixtures, PRIMUS enables model-independent singular value decomposition or linear fitting if the scattering from the components is known. An interface is also provided to the general non-linear fitting program MIXTURE, which is designed for quantitative analysis of multicomponent systems represented by simple geometrical bodies, taking shape and size polydispersity as well as interparticle interference effects into account. [source]