Angle Spectroscopic Ellipsometry (angle + spectroscopic_ellipsometry)

Distribution by Scientific Domains

Kinds of Angle Spectroscopic Ellipsometry

  • variable angle spectroscopic ellipsometry


  • Selected Abstracts


    Ultra-thin silicon solar cell: Modelling and characterisation

    PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 5 2008
    L. Danos
    Abstract An ultra-thin crystalline silicon solar cell with an active silicon layer of 200 nm has been fabricated and fully characterised electrically (I-V characteristic, spectral response) and optically (Variable Angle Spectroscopic Ellipsometry). Interference effects were observed in the spectral response of the cell due to multiple reflections from the layers within the cell. A mathematical model was developed to account for the different reflections and transmission within the cell which reproduced excellently the essential features of the experimental spectral response. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Sulphur passivation of GaSb, InGaAsSb and AlGaAsSb surfaces

    PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 4 2007
    E. Papis
    Abstract The effects of electrochemical treatment in either 21%(NH4)2S-H2O or 16%Na2S-C3H7OH solutions on the surface properties of GaSb, In0.23Ga77As0.18Sb0.82 and Al0.34Ga0.66As0.025Sb0.975 have been investigated by complementary use of Variable Angle Spectroscopic Ellipsometry (VASE) and X-ray Photoelectron Spectroscopy (XPS). We have shown that electrochemical sulphuration enables to produce 94,350 nm thick insulating overcoats with good surface morphology. The main components of the passivating layers are Ga2S3 and Sb2S5when formed on GaSb, while additional components of In2S3, admixture of Al2O3 and appearance of Al-As bond were observed on InGaAsSb and AlGaAsSb, respectively. The main feature distinguishing the effect of electrochemical treatment in Na2S,C3H7OH when comparing to those in (NH4)2S-H2O is that passivating layers contain additional components of Na2SO3 and/or Na2SO4. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Influence of Sn doping upon the phase change characteristics of Ge2Sb2Te5

    PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 14 2004
    K. Wang
    Abstract The influence of Sn doping upon the phase change characteristics of Ge2Sb2Te5 alloys has been investigated using four-point-probe electrical resistance measurements, grazing incidence X-ray diffraction (XRD), X-ray reflectometry (XRR) and variable incident angle spectroscopic ellipsometry (VASE), a static tester and atomic force microscopy (AFM). For a Ge2Sb2Te5 alloy doped with 4% Sn, two transition temperatures are observed in the temperature dependent sheet resistance measurements at 125 °C and 250 °C, respectively. The evolution of structures upon annealing, investigated by XRD, reveals that the first transition is caused by the crystallization of the amorphous film to a NaCl-type structure, while the second transition is related to the transition to a hexagonal structure. The density values of 6.02 ± 0.05 g cm,3, 6.38 ± 0.05 gcm,3 and 6.42 ± 0.05 gcm,3 are measured by XRR for the film in the amorphous, NaCl-type and hexagonal structure, respectively. Ultra-fast crystallization, which is correlated with a single NaCl-structure phase and the reduced activation barrier, is demonstrated. Sufficient optical contrast is exhibited and can be correlated with the density change upon crystallization. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Hybrid Sputtering-Remote PECVD Deposition of Au Nanoparticles on SiO2 Layers for Surface Plasmon Resonance-Based Colored Coatings

    PLASMA PROCESSES AND POLYMERS, Issue 8 2010
    Haile Takele Beyene
    Abstract In this paper, a hybrid system consisting of metal nano-particles dispersed on the surface of a dielectric layer is presented: a remote Expanding Thermal Plasma CVD system is used for the deposition of the inorganic (i.e. SiO2) layers from hexamethyldisiloxane/oxygen mixtures in combination with an rf magnetron sputtering tool for the deposition of metallic (i.e. gold) nanoparticles on top of the SiO2 layers. The optical properties of the Au/SiO2 layers have been investigated by means of UV-VIS-NIR variable angle spectroscopic ellipsometry. Rutherford backscattering and transmission electron microscopy were used to determine the film density, the nanoparticle size and its distribution, respectively. The uniform distribution of gold nanoparticles on the surface of the SiO2 layers allows obtaining red- to blue- colored coatings as a consequence of the shift of the surface plasmon resonance band to higher wavelengths, caused by an increase in size of nanoparticles and metal surface coverage. [source]


    Selective Deposition of Ultrathin Poly(p -xylene) Films on Dielectrics Versus Copper Surfaces

    CHEMICAL VAPOR DEPOSITION, Issue 5 2004
    J.J. Senkevich
    Ultrathin films of poly(p -xylylene) are selectively deposited on oxide surfaces but not on air exposed copper. The polymers are deposited under conditions favorable for forming highly conformal ultrathin films appropriate for ,pore sealing' the surface of ultra-low , dielectrics. Variable angle spectroscopic ellipsometry is used to measure the polymer deposit on SiO2, and shows the lack of deposition on air-exposed copper. X-ray photoelectron spectroscopic analysis of the copper samples shows deposition of adventitious carbon on the metal surface, and confirms that no polymer deposition occurs. [source]