J774 Cells (j774 + cell)

Distribution by Scientific Domains


Selected Abstracts


Activation of macrophages and interference with CD4+ T-cell stimulation by Mycobacterium avium subspecies paratuberculosis and Mycobacterium avium subspecies avium

IMMUNOLOGY, Issue 1 2003
Susanne Zur Lage
Summary Mycobacterium avium subspecies paratuberculosis (M. ptb) and M. avium subspecies avium (M. avium) are closely related but exhibit significant differences in their interaction with the host immune system. The macrophage line, J774, was infected with M. ptb and M. avium and analysed for cytokine production and stimulatory capacity towards antigen-specific CD4+ T cells. Under all conditions J774 cells were activated to produce proinflammatory cytokines. No influence on the expression of major histocompatibility complex (MHC) class II, intracellular adhesion molecule-1 (ICAM-1), B7.1, B7.2 or CD40 was found. However, the antigen-specific stimulatory capacity of J774 cells for a CD4+ T-cell line was significantly inhibited after infection with M. ptb, but not with M. avium. When a T-cell hybridoma expressing a T-cell receptor identical to that of the T-cell line was used, this inhibition was not observed, suggesting that costimulation which is essential for the CD4+ T-cell line is influenced by the pathogenic bacterium M. ptb. [source]


A host-vector system for molecular study of the intracellular growth of Mycobacterium tuberculosis in phagocytic cells

MICROBIOLOGY AND IMMUNOLOGY, Issue 10 2009
Mari Nomoto
ABSTRACT The mechanisms by which Mycobacterium tuberculosis survives and persists in phagocytic cells remain poorly understood. To study the question, a convenient and safe host-vector system is indispensable. In this study it has been shown that, in contrast with M. smegmatis strain mc2155 which has been widely used for molecular analysis, M. smegmatis strain J15cs is able to survive even at day 6 post-infection in a murine macrophage cell line, J774. The survivability of J15cs was found to depend on the culture medium used for the bacteria prior to infection. Bacteria precultured on nutrient agar medium showed a high survivability and a characteristic cell wall ultrastructure. A plasmid vector, pYT923hyg, was developed from an Escherichia coli - mycobacterium shuttle vector pYT923 (previously constructed in our laboratory) to obtain three drug resistant genes (amp-, hyg- and km-resistant gene) and cloning sites in the km resistant gene. The vector pYT923hyg exerted no influence on in vitro growth of J15cs and intracellular survival in J774 cells, and was stably retained in J15cs after serial subculturing (three subcultures) in Luria-Bertani broth and at day 5 post-infection into J774 cells. Furthermore, using this system, the possibility of a relationship between some seemingly essential genes of M. tuberculosis and intracellular growth was demonstrated. In this study, M. smegmatis strain J15cs and pYT923hyg were found to be capable of serving as an appropriate host-vector system for molecular study of the intracellular growth of M. tuberculosis in phagocytic cells; this system may be useful as a screening tool for M. tuberculosis genes. [source]


LDL and UV-oxidized LDL induce upregulation of iNOS and NO in unstimulated J774 macrophages and HUVEC

APMIS, Issue 1 2009
KARIN PERSSON
Oxidized low-density lipoprotein (LDL) diminishes NO production from activated macrophages. The interaction between LDL and inactivated macrophages is neglected and controversial. This study examines the effect of LDL, 7-oxysterols and iron compounds on NO production in unstimulated J774 macrophages. J774 cells and human umbilical vein endothelial cells (HUVEC) were either incubated for 24 h with native LDL (LDL) or ultraviolet (UV)-oxidized LDL (UVoxLDL), in the absence or presence of an inducible nitric oxide synthase (iNOS)- or an endothelial constitutive nitric oxide synthase (eNOS)-inhibitor. J774 cells were also incubated with lipopolysaccharide (LPS), in the absence or presence of an iNOS- or an eNOS-inhibitor. Nitrite was analysed as a marker of NO production. The mRNA levels of iNOS were evaluated by reverse transcriptase polymerase chain reaction. LDL and UVoxLDL significantly increased NO production from unstimulated J774 macrophages. This increase in NO was accompanied by enhanced expression of iNOS mRNA, and was inhibited by the iNOS inhibitor. Furthermore, NO production was elevated and angiotensin-converting enzyme (ACE) activity was reduced in HUVEC following the exposure to LDL and UVoxLDL. In conclusion, LDL may serve as an important inflammatory activator of macrophages and HUVEC, inducing inducible nitric oxide production but diminishing ACE. After its oxidation, this function of LDL may be further enhanced and may contribute to the regulation and progression of atheroma formation. [source]