Home About us Contact | |||
Iterative Approach (iterative + approach)
Selected AbstractsGeodetic imaging: reservoir monitoring using satellite interferometryGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 3 2002D. W. Vasco Summary Fluid fluxes within subsurface reservoirs give rise to surface displacements, particularly over periods of a year or more. Observations of such deformation provide a powerful tool for mapping fluid migration within the Earth, providing new insights into reservoir dynamics. In this paper we use Interferometric Synthetic Aperture Radar (InSAR) range changes to infer subsurface fluid volume strain at the Coso geothermal field. Furthermore, we conduct a complete model assessment, using an iterative approach to compute model parameter resolution and covariance matrices. The method is a generalization of a Lanczos-based technique which allows us to include fairly general regularization, such as roughness penalties. We find that we can resolve quite detailed lateral variations in volume strain both within the reservoir depth range (0.4,2.5 km) and below the geothermal production zone (2.5,5.0 km). The fractional volume change in all three layers of the model exceeds the estimated model parameter uncertainty by a factor of two or more. In the reservoir depth interval (0.4,2.5 km), the predominant volume change is associated with northerly and westerly oriented faults and their intersections. However, below the geothermal production zone proper [the depth range 2.5,5.0 km], there is the suggestion that both north- and northeast-trending faults may act as conduits for fluid flow. [source] Traveltime computation with the linearized eikonal equation for anisotropic mediaGEOPHYSICAL PROSPECTING, Issue 4 2002Tariq Alkhalifah A linearized eikonal equation is developed for transversely isotropic (TI) media with a vertical symmetry axis (VTI). It is linear with respect to perturbations in the horizontal velocity or the anisotropy parameter ,. An iterative linearization of the eikonal equation is used as the basis for an algorithm of finite-difference traveltime computations. A practical implementation of this iterative technique is to start with a background model that consists of an elliptically anisotropic, inhomogeneous medium, since traveltimes for this type of medium can be calculated efficiently using eikonal solvers, such as the fast marching method. This constrains the perturbation to changes in the anisotropy parameter , (the parameter most responsible for imaging improvements in anisotropic media). The iterative implementation includes repetitive calculation of , from traveltimes, which is then used to evaluate the perturbation needed for the next round of traveltime calculations using the linearized eikonal equation. Unlike isotropic media, interpolation is needed to estimate , in areas where the traveltime field is independent of ,, such as areas where the wave propagates vertically. Typically, two to three iterations can give sufficient accuracy in traveltimes for imaging applications. The cost of each iteration is slightly less than the cost of a typical eikonal solver. However, this method will ultimately provide traveltime solutions for VTI media. The main limitation of the method is that some smoothness of the medium is required for the iterative implementation to work, especially since we evaluate derivatives of the traveltime field as part of the iterative approach. If a single perturbation is sufficient for the traveltime calculation, which may be the case for weak anisotropy, no smoothness of the medium is necessary. Numerical tests demonstrate the robustness and efficiency of this approach. [source] Investigation of a modified sequential iteration approach for solving coupled reactive transport problemsINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 2 2006David J. Z. Chen Abstract When contaminants enter the soil or groundwater, they may interact physically, geochemically and biochemically with the native water, microorganisms and solid matrix. A realistic description of a reactive transport regime that includes these processes requires joint consideration of multiple chemical species. Currently there are three common numerical approaches for coupling multispecies reaction and solute transport: the one-step approach, the sequential non-iterative approach (SNIA), and the sequential iterative approach (SIA). A modification of the SNIA method is the Strang-splitting method. In this study, a new modified sequential iteration approach (MSIA) for solving multicomponent reactive transport in steady state groundwater flow is presented. This coupling approach has been applied to two realistic reactive transport problems and its performance compared with the SIA and the Strang-splitting methods. The comparison shows that MSIA consistently converges faster than the other two coupling schemes. For the simulation of nitrogen and related species transport and reaction in a riparian aquifer, the total CPU time required by MSIA is only about 38% of the total CPU time required by the SIA, and only 50% of the CPU time required by the Strang-splitting method. The test problem results indicate that the SIA has superior accuracy, while the accuracy of MSIA is marginally better than that of the Strang-splitting method. The overall performance of MSIA is considered to be good, especially for simulations in which computational time is a critical factor. Copyright © 2005 John Wiley & Sons, Ltd. [source] An adaptive multigrid iterative approach for frictional contact problemsINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 7 2006S. A. Mohamed Abstract The objective of this paper is the construction of a robust strategy towards adaptively solving Signorini's frictional contact problems. The frictional contact problem between a linearly elastic body and rigid foundation is formulated as a classical boundary value problem of the elastic body but associated with special inequality conditions on the contact surface. A new iterative approach is presented to solve the problem on a given mesh. In the first iteration the candidate nodes are assumed to be in micro-slip contact and then proceeding to update the contact status according to the actual displacements and stresses obtained at the end of each increment. An efficient multigrid method is developed to solve the discrete problems of different iterations. The proposed iterative procedure is integrated with an error indicator and automatic grid generator to construct an adaptive multigrid method. Numerical results of the convergence rates, automatically generated grid sequence, contact stresses and strains as well as two parametric studies are presented to prove the efficiency of the proposal. Copyright © 2005 John Wiley & Sons, Ltd. [source] A weak solution approach to a reaction,diffusion system modeling pattern formation on seashellsMATHEMATICAL METHODS IN THE APPLIED SCIENCES, Issue 17 2009Jan Kelkel Abstract We investigate a reaction,diffusion system proposed by H. Meinhardt as a model for pattern formation on seashells. We give a new proof for the existence of a local weak solution for general initial conditions and parameters upon using an iterative approach. Furthermore, the solution is shown to exist globally for suitable initial data. The behavior of the solution in time and space is illustrated through numerical simulations. Copyright © 2009 John Wiley & Sons, Ltd. [source] An alternative model for predicting the cure kinetics of a high temperature cure epoxy adhesive,POLYMER ENGINEERING & SCIENCE, Issue 1 2003Angela D. Rogers The purpose of this work was to develop a cure kinetics model for a commercially available high temperature cure epoxy adhesive commonly used in the aerospace industry. While there are several phenomenological cure kinetic models commonly used in the literature for describing the rate of conversion of thermosetting epoxy adhesives as a function of degree of conversion, none of these models adequately depicts the adhesive used in this work over the entire range of conversion. Hence, by curve fitting empirical data collected using differential scanning calorimetry and refinement of existing models, an alternative model is proposed. The form of the present model suggests that chemical curing is the result of the combination of two autocatalytic reactions. The model is able to account for both the chemically controlled and diffusion controlled regimes of the cure. This paper also describes a novel iterative approach for predicting kinetics parameters as a function of isothermal cure temperature. Excellent agreement between experimental measurements and model predictions has been demonstrated over the entire range of conversion. [source] From Central Planning to Centrality: Krakow's Land Prices After Poland's Big BangREAL ESTATE ECONOMICS, Issue 2 2005David Dale-Johnson We examine commercial land markets in Krakow, Poland over a 10-year period of transition from socialist management to a market economy. We explore the spatial and temporal evolution of land prices over this period. In particular, we are interested in identifying trends toward or away from centrality, and in discovering whether or not these trends acted on the city center alone or over a set of centers. The data set we employ is uniquely appropriate for this purpose as the densifying force of "highest-and-best" use,typically found in market-oriented cities,was absent under four decades of socialist planning, leaving undeveloped land scattered throughout the city. Free of quality control issues associated with disentangling the value of land from properties in which land and structures are bundled, the data offer a clean assessment of land prices within an urban area. We employ a novel, iterative approach to identify pricing centers,"nodes" of similarly sized residuals,which we interpret as evidence of omitted spatial amenities. Using this approach, we find that the price gradient in Krakow evolved toward concentration, but concentration in several centers rather than in just one. We find that the exclusion of proximity to these centers leads to biased coefficients in the hedonic regressions; we also find that the majority of the apparent spatial autocorrelation in the aspatial regressions results from the omission of proximity to these centers. [source] Approaches for assessing hazards and risks to workers and the public from contaminated landREMEDIATION, Issue 1 2007Michael Gochfeld Many public agencies and private entities are faced with assessing the risks to humans from contamination on their lands. The United States Department of Energy (US DOE) and Department of Defense are responsible for large holdings of contaminated land and face a long-term and costly challenge to assure sustainable protectiveness. With increasing interest in the conversion of brownfields to productive uses, many former industrial properties must also be assessed to determine compatible future land uses. In the United States, many cleanup plans or actions are based on the Comprehensive Environmental Responsibility, Compensation, and Liability Act, which provides important but incomplete coverage of these issues, although many applications have tried to involve stakeholders at multiple steps. Where there is the potential for exposure to workers, the public, and the environment from either cleanup or leaving residual contamination in place, there is a need for a more comprehensive approach to evaluate and balance the present and future risk(s) from existing contamination, from remediation actions, as well as from postremediation residual contamination. This article focuses on the US DOE, the agency with the largest hazardous waste remediation task in the world. Presented is a framework extending from preliminary assessment, risk assessment and balancing, epidemiology, monitoring, communication, and stakeholder involvement useful for assessing risk to workers and site neighbors. Provided are examples of those who eat fish, meat, or fruit from contaminated habitats. The US DOE's contaminated sites are unique in a number of ways: (1) huge physical footprint size, (2) types of waste (mixed radiation/chemical), and (3) quantities of waste. Proposed future land uses provide goals for remediation, but since some contamination is of a type or magnitude that cannot be cleaned up with existing technology, this in turn constrains future land use options, requiring an iterative approach. The risk approaches must fit a range of future land uses and end-states from leave-in-place to complete cleanup. This will include not only traditional risk methodologies, but also the assessment and surveillance necessary for stewards for long-term monitoring of risk from historic and future exposure to maintain sustainable protectiveness. Because of the distinctiveness of DOE sites, application of the methodologies developed here to other waste site situations requires site-specific evaluation © 2007 Wiley Periodicals, Inc. [source] Using hybrid alignment for iterative sequence database searchesCONCURRENCY AND COMPUTATION: PRACTICE & EXPERIENCE, Issue 9 2004Yuheng Li Abstract Progressive sequence model refinement by means of iterative searches is an effective technique for high sensitivity database searches and is currently employed in popular tools such as PSI-BLAST and SAM. Recently, a novel alignment algorithm has been proposed that offers features expected to improve the sensitivity of such iterative approaches, specifically a well-characterized theory of its statistics even in the presence of position-specific gap costs. Here, we demonstrate that the new hybrid alignment algorithm is ready to be used as the alignment core of PSI-BLAST. In addition, we evaluate the accuracy of two proposed approaches to edge effect correction in short sequence alignment statistics that turns out to be one of the crucial issues in developing a hybrid-alignment based version of PSI-BLAST. Copyright © 2004 John Wiley & Sons, Ltd. [source] Fast iterative solution of large undrained soil-structure interaction problemsINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 3 2003Kok-Kwang Phoon Abstract In view of rapid developments in iterative solvers, it is timely to re-examine the merits of using mixed formulation for incompressible problems. This paper presents extensive numerical studies to compare the accuracy of undrained solutions resulting from the standard displacement formulation with a penalty term and the two-field mixed formulation. The standard displacement and two-field mixed formulations are solved using both direct and iterative approaches to assess if it is cost-effective to achieve more accurate solutions. Numerical studies of a simple footing problem show that the mixed formulation is able to solve the incompressible problem ,exactly', does not create pressure and stress instabilities, and obviate the need for an ad hoc penalty number. In addition, for large-scale problems where it is not possible to perform direct solutions entirely within available random access memory, it turns out that the larger system of equations from mixed formulation also can be solved much more efficiently than the smaller system of equations arising from standard formulation by using the symmetric quasi-minimal residual (SQMR) method with the generalized Jacobi (GJ) preconditioner. Iterative solution by SQMR with GJ preconditioning also is more elegant, faster, and more accurate than the popular Uzawa method. Copyright © 2003 John Wiley & Sons, Ltd. [source] A tutorial comparison of the NMRIT and LAOCOON approaches for analyses of complex solution-phase nuclear magnetic resonance spectraMAGNETIC RESONANCE IN CHEMISTRY, Issue 5 2002Stanley L. Manatt Abstract For spin ½ nuclei the two most frequently used iterative approaches for determinations of NMR chemical shifts (hi) and coupling constants (Ji), NMRIT and LAOCOON, are discussed. When multiple pulse techniques for extraction of these parameters fail or lead to complicated spectra in the cases of very strongly coupled spin systems and systems involving magnetically nonequivalent, chemical shift equivalent nuclei, recourse to these iterative methods is necessary. The former approach employs the energy levels derived from the observed transition frequencies, whereas the latter approach uses the observed transition frequencies. Derivations of the general iterative equations for both approaches are given, along with the specific equations for the ABC spin system. The matrix nature of the derivation of these equations is stressed. Also discussed is the modified NMRIT program, NMRENIT, which has major advantages over the former in cases with symmetry and in cases where not enough lines can be assigned to link all the energy levels. The advantages of the latter program over LAOCOON in certain cases are discussed. Some general advice on the use of both approaches is presented. The Hoffman energy level approach is also discussed and it is shown that it yields the same iterative equations as the LAOCOON approach. Copyright © 2002 John Wiley & Sons, Ltd. [source] |