Distribution by Scientific Domains

Kinds of Isozymes

  • c isozyme
  • ca isozyme
  • cyp isozyme
  • kinase c isozyme
  • pkc isozyme
  • protein kinase c isozyme

  • Terms modified by Isozymes

  • isozyme analysis
  • isozyme variation

  • Selected Abstracts

    A New Chemical Tool for Exploring the Physiological Function of the PDE2 Isozyme.

    CHEMINFORM, Issue 15 2006
    Robert J. Chambers
    Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract, please click on HTML or PDF. [source]

    The thioredoxin-independent isoform of chloroplastic glyceraldehyde-3-phosphate dehydrogenase is selectively regulated by glutathionylation

    FEBS JOURNAL, Issue 1 2007
    Mirko Zaffagnini
    In animal cells, many proteins have been shown to undergo glutathionylation under conditions of oxidative stress. By contrast, very little is known about this post-translational modification in plants. In the present work, we showed, using mass spectrometry, that the recombinant chloroplast A4 -glyceraldehyde-3-phosphate dehydrogenase (A4 -GAPDH) from Arabidopsis thaliana is glutathionylated with either oxidized glutathione or reduced glutathione and H2O2. The formation of a mixed disulfide between glutathione and A4 -GAPDH resulted in the inhibition of enzyme activity. A4 -GAPDH was also inhibited by oxidants such as H2O2. However, the effect of glutathionylation was reversed by reductants, whereas oxidation resulted in irreversible enzyme inactivation. On the other hand, the major isoform of photosynthetic GAPDH of higher plants (i.e. the AnBn -GAPDH isozyme in either A2B2 or A8B8 conformation) was sensitive to oxidants but did not seem to undergo glutathionylation significantly. GAPDH catalysis is based on Cys149 forming a covalent intermediate with the substrate 1,3-bisphosphoglycerate. In the presence of 1,3-bisphosphoglycerate, A4 -GAPDH was fully protected from either oxidation or glutathionylation. Site-directed mutagenesis of Cys153, the only cysteine located in close proximity to the GAPDH active-site Cys149, did not affect enzyme inhibition by glutathionylation or oxidation. Catalytic Cys149 is thus suggested to be the target of both glutathionylation and thiol oxidation. Glutathionylation could be an important mechanism of regulation and protection of chloroplast A4 -GAPDH from irreversible oxidation under stress. [source]

    Enzyme Replacement Therapy for Murine Hypophosphatasia,

    Jos Luis Milln PhD
    Abstract Introduction: Hypophosphatasia (HPP) is the inborn error of metabolism that features rickets or osteomalacia caused by loss-of-function mutation(s) within the gene that encodes the tissue-nonspecific isozyme of alkaline phosphatase (TNALP). Consequently, natural substrates for this ectoenzyme accumulate extracellulary including inorganic pyrophosphate (PPi), an inhibitor of mineralization, and pyridoxal 5,-phosphate (PLP), a co-factor form of vitamin B6. Babies with the infantile form of HPP often die with severe rickets and sometimes hypercalcemia and vitamin B6 -dependent seizures. There is no established medical treatment. Materials and Methods: Human TNALP was bioengineered with the C terminus extended by the Fc region of human IgG for one-step purification and a deca-aspartate sequence (D10) for targeting to mineralizing tissue (sALP-FcD10). TNALP-null mice (Akp2,/,), an excellent model for infantile HPP, were treated from birth using sALP-FcD10. Short-term and long-term efficacy studies consisted of once daily subcutaneous injections of 1, 2, or 8.2 mg/kg sALP-FcD10 for 15, 19, and 15 or 52 days, respectively. We assessed survival and growth rates, circulating levels of sALP-FcD10 activity, calcium, PPi, and pyridoxal, as well as skeletal and dental manifestations using radiography, ,CT, and histomorphometry. Results:Akp2,/, mice receiving high-dose sALP-FcD10 grew normally and appeared well without skeletal or dental disease or epilepsy. Plasma calcium, PPi, and pyridoxal concentrations remained in their normal ranges. We found no evidence of significant skeletal or dental disease. Conclusions: Enzyme replacement using a bone-targeted, recombinant form of human TNALP prevents infantile HPP in Akp2,/, mice. [source]

    Involvement of protein kinase C-, in DNA damage-induced apoptosis

    Alakananda Basu
    Abstract Apoptosis is a highly orchestrated cell suicidal program required to maintain a balance between cell proliferation and cell death. A defect in apoptotic machinery can cause cancer. Many anticancer drugs are known to kill tumor cells by inducing apoptosis, and a defect in apoptosis can lead to anticancer drug resistance. Apoptosis is regulated by a complex cellular signaling network. Several members of the protein kinase C (PKC) family serve as substrates for caspases and PKC, isozyme has been intimately associated with DNA damage-induced apoptosis. It can act both upstream and downstream of caspases. In response to apoptotic stimuli, the full-length and the catalytic fragment of PKC, may translocate to distinct cellular compartments, including mitochondria and the nucleus, to reach their targets. Both activation and intracellular distribution of PKC, may have significant impact on apoptosis. This review intends to assimilate recent views regarding the involvement of PKC, in DNA damage-induced apoptosis. [source]

    Subcellular redistribution of protein kinase C isozymes is associated with rat liver cirrhotic changes induced by carbon tetrachloride or thioacetamide

    Da-Hee Jeong
    Abstract Background and Aims: Protein kinase C (PKC) plays a key role in the alteration of signal transduction in the liver, which may contribute to the development of liver cirrhosis. The aim of the present study was to examine the subcellular redistribution of PKC isozymes in rat liver cirrhosis, which is induced by two different cirrhotic chemical agents, carbon tetrachloride (CCl4) and thioacetamide (TAA). Methods and Results: Thioacetamide and CCl4 were administered to rats for 8 and 30 weeks, respectively before rats were killed and autopsies performed at 9, 20 and 30 weeks later. The TAA induced a fibrotic pattern in the liver that differed from that produced by CCl4, notably in the formation of fibrous connective tissue and the proliferation of bile ductule cells. Cholangiofibrosis and clear-cell foci were also observed in TAA-treated rats at 30 weeks. Histological examination revealed that severe cirrhotic changes were present 9 weeks after the commencement of CCl4 treatment and 30 weeks after TAA treatment. Discussion: When the subcellular redistribution of PKC isozymes (PKC,, -,1, -,, and -,) was examined, all the PKC isozymes in CCl4 -treated rats were found to be translocated to the membrane fraction, which may mean PKC activation, and then downregulated by proteolytic degradation after 9 weeks of treatment, which coincided with peak cirrhotic changes. All rats treated with CCl4 recovered to the control level after 20 weeks of treatment. In the case of TAA-treated rats, PKC isozymes were translocated to the particulate fraction of the liver after 9 weeks of treatment and this persisted in most of the rats for the duration of the experiment. Conclusions: From these results, it would appear that PKC translocation preceded morphologic changes, and that an altered subcellular distribution of the PKC isozyme may be associated with the response to liver damage and carcinogenesis. [source]

    Alkaline phosphatase isozyme activity in serum from patients with chronic periodontitis

    P. Gibert
    Background:, High alkaline phosphatase activity (ALP) is shown in the periodontal ligament due to the constant renewal of this tissue or pathological circumstances. We have previously shown that the activity level of this enzyme could be reflected at the serum level. Objectives:, Because the local production of ALP in the periodontal ligament is often of the bone-type enzyme, we studied the activity of this isozyme among the other isoforms in the serum of patients with chronic periodontitis in comparison with that of control subjects. Material and methods:, This study included 83 patients (59 with periodontal disease, 24 as control group) and we determined the total seric ALP activity and the percentage of the different isoforms (essentially bone, kidney and intestinal-types) by Ektachem analyser and gel agarose electrophoresis respectively. Conclusions:, By comparisons between the two groups, our results showed a relationship between loss of attachment in periodontal disease and a drop in bone ALP activity in serum. Moreover, these results suggested a gender based difference as well, with lower activity more frequent in women than in men. [source]

    Sulfamates and their therapeutic potential

    Jean-Yves Winum
    Abstract Starting from the very simple molecule sulfamic acid, O -substituted-, N -substituted-, or di-/tri-substituted sulfamates may be obtained, which show specific biological activities which were or started to be exploited for the design of many types of therapeutic agents. Among them, sulfamate inhibitors of aminoacyl-tRNA synthetases (aaRSs) were recently reported, constituting completely new classes of antibiotics, useful in the fight of drug-resistant infections. Anti-viral agents incorporating sulfamate moieties have also been obtained, with at least two types of such derivatives investigated: the nucleoside/nucleotide human immunodeficiency virus (HIV) reverse transcriptase inhibitors, and the HIV protease inhibitors (PIs). In the increasing armamentarium of anti-cancer drugs, the sulfamates occupy a special position, with at least two important targets evidenced so far: the steroid sulfatases (STSs) and the carbonic anhydrases (CAs). An impressing number of inhibitors of STSs of the sulfamate type have been reported in the last years, with several compounds, such as 667COUMATE among others, progressing to clinical trials for the treatment of hormone-dependent tumors (breast and prostate cancers). This field is rapidly evolving, with many types of new inhibitors being constantly reported and designed in such a way as to increase their anti-tumor properties, and decrease undesired features (for example, estrogenicity, a problem encountered with the first generation such inhibitors, such as EMATE). Among the many isozymes of CAs, at least two, CA IX and CA XII, are highly overexpressed in tumors, being generally absent in the normal tissues. Inhibition of tumor-associated CAs was hypothesized to lead to novel therapeutic approaches for the treatment of cancer. Many sulfamates act as very potent (low nanomolar) CA inhibitors. The X-ray crystal structure of the best-studied isozyme, CA II, with three sulfamates (sulfamic acid, topiramate, and EMATE) has recently been reported, which allowed for a rationale drug design of new inhibitors. Indeed, low nanomolar CA IX inhibitors of the sulfamate type have been reported, although such compounds also act as efficient inhibitors of isozymes CA I and II, which are not associated with tumors. A large number of anti-convulsant sulfamates have been described, with one such compound, topiramate, being widely used clinically as anti-epileptic drug. By taking into consideration a side effect of topiramate, an anti-epileptic drug leading to weight loss in some patients, it has recently been proposed to use this drug and related sulfamates for the treatment of obesity. The rationale of this use is based on the inhibition of the mitochondrial CA isozyme, CA V, involved in lipogenesis. Some sulfamates were also shown to possess potent inhibitory activity against acyl coenzyme A:cholesterol acyltransferase, an enzyme involved in cholesterol metabolism. One such agent, avasimibe, is in advanced clinical trials for the treatment of hyperlipidemia and atherosclerosis. Thus, the sulfamate moiety offers very attractive possibilities for the drug design of various pharmacological agents, which are on one hand due to the relative ease with which such compounds are synthesized, and on the other one, due to the fact that biological activity of most of them is impressive. 2004 Wiley Periodicals, Inc. [source]

    Changes in serum lactate dehydrogenase activity in children with atopic dermatitis

    Yasuyuki Morishima
    Abstract Background:, In recent years an increase has been seen in the number of patients with severe atopic dermatitis (AD) accompanied with generalized typical eruptions. Some markers indicating the severity of the disease and symptom changes are very useful, and therefore the purpose of the present study was to investigate serum lactate dehydrogenase (LDH) as such a marker. Methods:, A total of 58 children with AD were enrolled. The severity of the disease was graded on the basis of the extent of eruptions and the severity of atopic symptoms. The fraction of serum LDH, number of eosinocytes in the peripheral blood, and serum IgE levels were also determined. Results and Conclusion:, There was a close correlation between the severity of cutaneous symptoms and serum LDH activity, and between severity and eosinocyte count, but no relationship was seen between serum IgE levels and severity of the disease. The aforementioned factors were determined in a time-related way. As the patients' condition improved, serum LDH activity tended to decline, but there were no consistent changes in eosinocyte count in the peripheral blood or serum IgE level. On LDH isozyme the levels of LDH4 and LDH5 were high. Tissue showed high LDH activity, especially in epidermides. These results suggest that serum LDH activity is a useful marker. [source]

    Arabidopsis protein repair l -isoaspartyl methyltransferases: predominant activities at lethal temperatures

    Sarah T. Villa
    Protein l -isoaspartyl (d -aspartyl) O -methyltransferases (Enzyme Commission (EC); PIMT or PCMT) are enzymes that initiate the full or partial repair of damaged l -aspartyl and l -asparaginyl residues, respectively. These enzymes are found in most organisms and maintain a high degree of sequence conservation. Arabidopsis thaliana (Arabidopsis L. Heynh.) is unique among eukaryotes in that it contains two genes, rather than one, that encode PIMT isozymes. We describe a novel A. thaliana PIMT isozyme, designated AtPIMT2,,, encoded by the PIMT2 gene (At5g50240). We characterized the enzymatic activity of the recombinant AtPIMT2,, in comparison to the other AtPIMT2 isozymes, AtPIMT1, and to the human PCMT1 ortholog, to better understand its role in Arabidopsis. All Arabidopsis PIMT isozymes are active over a relatively wide pH range. For AtPIMT2,, maximal activity is observed at 50C (a lethal temperature for Arabidopsis); this activity is almost 10 times greater than the activity at the growth temperature of 25C. Interestingly, enzyme activity decreases after pre-incubation at temperatures above 30C. A similar situation is found for the recombinant AtPIMT2, and the AtPIMT2, isozymes, as well as for the AtPIMT1 and human PCMT1 enzymes. These results suggest that the short-term ability of these methyltransferases to initiate repair under extreme temperature conditions may be a common feature of both the plant and animal species. [source]

    Crystal structure of the Streptococcus pneumoniae mevalonate kinase in complex with diphosphomevalonate

    PROTEIN SCIENCE, Issue 5 2007
    John L. Andreassi II
    Abstract Streptococcuspneumoniae, a ubiquitous gram-positive pathogen with an alarming, steadily evolving resistance to frontline antimicrobials, poses a severe global health threat both in the community and in the clinic. The recent discovery that diphosphomevalonate (DPM), an essential intermediate in the isoprenoid biosynthetic pathway, potently and allosterically inhibits S. pneumoniae mevalonate kinase (SpMK) without affecting the human isozyme established a new target and lead compound for antimicrobial design. Here we present the crystal structure of the first S. pneumoniae mevalonate kinase, at a resolution of 2.5 and in complex with DPMMg2+ in the active-site cleft. Structural comparison of SpMK with other members of the GHMP kinase family reveals that DPM functions as a partial bisubstrate analog (mevalonate linked to the pyrophosphoryl moiety of ATP) in that it elicits a ternary-complexlike form of the enzyme, except for localized disordering in a region that would otherwise interact with the missing portion of the nucleotide. Features of the SpMK-binding pockets are discussed in the context of established mechanistic findings and inherited human diseases linked to MK deficiency. [source]

    Structural studies of human alkaline phosphatase in complex with strontium: Implication for its secondary effect in bones

    PROTEIN SCIENCE, Issue 7 2006
    Paola Llinas
    Abstract Strontium is used in the treatment of osteoporosis as a ranelate compound, and in the treatment of painful scattered bone metastases as isotope. At very high doses and in certain conditions, it can lead to osteomalacia characterized by impairment of bone mineralization. The osteomalacia symptoms resemble those of hypophosphatasia, a rare inherited disorder associated with mutations in the gene encoding for tissue-nonspecific alkaline phosphatase (TNAP). Human alkaline phosphatases have four metal binding sites,two for zinc, one for magnesium, and one for calcium ion,that can be substituted by strontium. Here we present the crystal structure of strontium-substituted human placental alkaline phosphatase (PLAP), a related isozyme of TNAP, in which such replacement can have important physiological implications. The structure shows that strontium substitutes the calcium ion with concomitant modification of the metal coordination. The use of the flexible and polarizable force-field TCPEp (topological and classical polarization effects for proteins) predicts that calcium or strontium has similar interaction energies at the calcium-binding site of PLAP. Since calcium helps stabilize a large area that includes loops 210,228 and 250,297, its substitution by strontium could affect the stability of this region. Energy calculations suggest that only at high doses of strontium, comparable to those found for calcium, can strontium substitute for calcium. Since osteomalacia is observed after ingestion of high doses of strontium, alkaline phosphatase is likely to be one of the targets of strontium, and thus this enzyme might be involved in this disease. [source]

    Toward the development of new medicinal leads with selectivity for protein kinase C isozymes

    THE CHEMICAL RECORD, Issue 4 2005
    Kazuhiro Irie
    Abstract Tumor promoters such as phorbol esters bind strongly to protein kinase C (PKC) isozymes to induce their activation. Since each PKC isozyme is involved in diverse biological events in addition to tumor promotion, the isozymes serve as promising therapeutic targets. Tumor promoters bind to the C1A and/or C1B domain of conventional (,, ,I, ,II, and ,) and novel PKC isozymes (,, ,, ,, and ,). As these C1 domains play differential roles in PKC activation and their translocation in cells, the development of agents with binding selectivity for individual C1 domains is a pressing need. For this purpose, we established a synthetic C1 peptide library of all PKC isozymes. The library enabled us to identify indolactam-V (1) as a promising lead compound. Our diverse structure,activity studies on 1 indicated that the position of the hydrophobic substituent on the indole ring dominates the PKC isozyme- and C1 domain-selective binding rather than conformation of the nine-membered lactam. Moreover, we suggested that the indole ring of 1 could be involved in the CH/, interaction with Pro-11 of the C1B domain of PKC,. This invaluable information will lead to the structural optimization of the PKC, ligand as exemplified by the design and synthesis of naphtholactam-V8 (21). 2005 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Chem Rec 5: 185,195; 2005: Published online in Wiley InterScience ( DOI 10.1002/tcr.20044 [source]

    Immunohistolocalization and Gene Expression of the Carbonic Anhydrase Isoenzymes (CA-II and CA-VI) in Glands Associated with the Canine Lacrimal Apparatus

    Y. Sugiura
    Summary Cytosolic and secretory carbonic anhydrase isoenzymes (CA-II and CA-VI, respectively) were detected by immunohistolocalization using specific canine CA-II and CA-VI antisera. CA-II and CA-VI were identified in glands associated with the canine lacrimal apparatus, such as lacrimal gland, superficial gland of the third eyelid (third eyelid gland) and tarsal gland. CA-II and CA-VI mRNA signals were also detected by reverse-transcriptase polymerase chain reaction in the same tissues. Some serous acinar cells and duct segments in the lacrimal gland and serous acinar cells in the third eyelid gland were immunopositive for anti-CA-II and CA-VI antisera. In particular, some immunopositive acini to CA-II and CA-VI on the edge of the third eyelid gland are histologically similar to sebaceous gland cells. Sebaceous gland cells in the tarsal and ciliary glands also showed immunopositivity to both CA antisera. CA-II and CA-VI gene transcripts were detected in the same regions. These results suggest that secreted CA-VI may form together with cytosolic CA-II, a high-activity isozyme mostly considered as a bicarbonate producer, in a mutually complementary system for the maintenance of bicarbonate levels to regulate pH in tear fluid and protect the corneal epithelia against injuries. In sebaceous gland cells in the lacrimal apparatus, CA-VI may be related to lipogenesis in an unknown function. [source]

    Simultaneous Detection of ACP1 and GC Genotypes Using PCR/SSCP

    J. Dissing
    Summary The classical enzyme and protein markers ACP1 and GC have gained new importance because of the biological functions of their gene products. ACP1 encodes a low molecular weight enzyme which is now recognized as a phosphotyrosine phosphatase with a role in the regulation of signal transduction pathways, and GC-globulin acts both as a transporter of vitamin D and as a plasma actin scavenger and plays a role in macrophage activation. These two polymorphisms were phenotyped for decades on the basis of electrophoretic isozyme or protein patterns; the gene structures are now known. Nucleotide substitutions determining the common alleles are close enough at each locus to be contained in one short PCR product. We have developed a simple, rapid and reliable multiplex method based on PCR and SSCP which allows the simultaneous determination of the common ACP1 and GC genotypes. [source]

    Autoantibodies in gluten ataxia recognize a novel neuronal transglutaminase

    ANNALS OF NEUROLOGY, Issue 3 2008
    Marios Hadjivassiliou MD
    Objective Gluten sensitivity typically presents as celiac disease, a chronic, autoimmune-mediated, small-intestinal disorder. Neurological disorders occur with a frequency of up to 10% in these patients. However, neurological dysfunction can also be the sole presenting feature of gluten sensitivity. Development of autoimmunity directed toward different members of the transglutaminase gene family could offer an explanation for the diversity in manifestations of gluten sensitivity. We have identified a novel neuronal transglutaminase isozyme and investigated whether this enzyme is the target of the immune response in patients with neurological dysfunction. Methods Using recombinant human transglutaminases, we developed enzyme-linked immunosorbent assays and inhibition assays to analyze serum samples of patients with gluten-sensitive gastrointestinal and neurological disorders, and various control groups including unrelated inherited or immune conditions for the presence and specificity of autoantibodies. Results Whereas the development of anti-transglutaminase 2 IgA is linked with gastrointestinal disease, an anti-transglutaminase 6 IgG and IgA response is prevalent in gluten ataxia, independent of intestinal involvement. Such antibodies are absent in ataxia of defined genetic origin or in healthy individuals. Inhibition studies showed that in those patients with ataxia and enteropathy, separate antibody populations react with the two different transglutaminase isozymes. Furthermore, postmortem analysis of brain tissue showed cerebellar IgA deposits that contained transglutaminase 6. Interpretation Antibodies against transglutaminase 6 can serve as a marker in addition to human leukocyte antigen type and detection of anti-gliadin and anti-transglutaminase 2 antibodies to identify a subgroup of patients with gluten sensitivity who may be at risk for development of neurological disease. Ann Neurol 2008;64:332,343 [source]

    Angiotensin I-converting enzyme and potential substrates in human testis and testicular tumours

    APMIS, Issue 1 2003
    Review article
    The angiotensin I-converting enzyme (ACE, kininase II, CD143) shows a broad specificity for various oligopeptides. Besides the well-known conversion of angiotensin I to II, ACE degrades efficiently kinins and the tetrapeptide AcSDKP (goralatide) and thus equally participates in the renin-angiotensin system, the kallikrein-kinin system, and the regulation of stem cell proliferation. In the mammalian testis, ACE occurs in two isoforms. The testicular isoform (tACE) is exclusively expressed during spermatogenesis and is generally thought to represent the germ cell-specific isozyme. However, we have previously demonstrated that, in addition to tACE, the somatic isoform (sACE) is also present in human germ cells. Similar to other oncofoetal markers, sACE exhibits a transient expression during foetal germ cell development and appears to be a constant feature of intratubular germ cell neoplasm, the so-called carcinoma-in-situ (CIS) and, in particular, of classic seminoma. This demands the existence of specific paracrine functions during male germ cell differentiation and development of male germ cell tumours, which are mediated by either of the two ACE isoforms. Considering the complexity of current data about ACE, a logical connection is required between () the precise localisation of ACE isoforms, (I) the local access to potential substrates and (II) functional data obtained by knockout mice models. The present article summarises the current knowledge about ACE and its potential substrates with special emphasis on the differentiation-restricted ACE expression during human spermatogenesis and prespermatogenesis, the latter being closely linked to the pathogenesis of human germ cell tumours. [source]

    Genetic and morphological evidence for reproductive isolation between sympatric populations of Galaxias (Teleostei: Galaxiidae) in South Island, New Zealand

    New Zealand's South Island houses a flock of closely related stream-resident fish taxa (Galaxias vulgaris sensu lato), including a number of species recently described on the basis of subtle morphological differences. The taxonomic status of some members of the species complex remains uncertain. This study examines the degree of reproductive isolation between recently recognized morphotypes from Southland (G. ,southern', flatheads; G. gollumoides, roundheads) which co-occur in Bushy Creek, a tributary of the Mataura R. Although these morphotypes are broadly sympatric in Southland and Stewart Island, Bushy Creek is their only documented zone of contact. Molecular (microsatellite, isozyme and mtDNA markers) and morphological analyses of 139 fish samples across a 500-m transect (seven stations) reveal a cline from predominantly G. ,southern' (N=85) to predominantly G. gollumoides (JV=54), corresponding with a gradual increase in stream gradient. Multivariate analyses of genotypic and morphological data independently reveal distinct clusters that are completely congruent with mtDNA type, suggesting an absence of mtDNA introgression. Our data support the separate species status of G. ,southern' and G. gollumoides under both biological and phylogenetic species concepts. We suggest that the speciation of these taxa occurred in allopatry through independent losses of diadromy, with sympatry resulting from secondary contact. [source]

    Drug disposition of chiral and achiral drug substrates metabolized by cytochrome P450 2D6 isozyme: case studies, analytical perspectives and developmental implications

    Nuggehally R. Srinivas
    Abstract The concepts of drug development have evolved over the last few decades. Although number of novel chemical entitities belonging to varied classes have made it to the market, the process of drug development is challenging, intertwined as it is with complexities and uncertainities. The intention of this article is to provide a comprehensive review of novel chemical entities (NCEs) that are substrates to cytochrome P450 (CYP) 2D6 isozyme. Topics covered in this review aim: (1) to provide a framework of the importance of CYP2D6 isozyme in the biotransformation of NCEs as stand-alones and/or in conjunction with other CYP isozymes; (2) to provide several case studies of drug disposition of important drug substrates, (3) to cover key analytical perspectives and key assay considerations to assess the role and involvement of CYP2D6, and (4) to elaborate some important considerations from the development point of view. Additionally, wherever applicable, special emphasis is provided on chiral drug substrates in the various subsections of the review. Copyright 2006 John Wiley & Sons, Ltd. [source]

    In vitro metabolism of a new H+/K+ ATPase inhibitor DBM-819 in liver microsomes using HPLC and electrospray mass spectrometry

    Sung Jin Choi
    The metabolism of 1-(2-methyl-4-methoxyphenyl)-4-[(3-hydroxypropyl)amino]-6-methyl-2,3-dihydropyrrolo[3,2c]quinoline (DBM-819), a new H+/K+ ATPase inhibitor, has been studied by HPLC with spectrometric detection and on-line LC-electrospray mass spectrometry. In vitro incubation of DBM-819 with rat liver microsomes in the presence of NADPH resulted in the production of four metabolites (M1-4), whereas DBM-819 was oxidized to two metabolites, M2 and M4, by human liver microsomes. M2, M3 and M4 were identified as O-demethyl-DBM-819, 8-hydroxy-DBM-819 and N-dehydroxypropyl-DBM-819, respectively, based on LC/MS/MS analysis with authentic standards. M1 was tentatively identified as 1-(hydroxy-2-methyl-4-methoxyphenyl)-4-[(3-hydroxypropyl)amino]-6-methyl-2,3-dihydropyrrolo[3,2c]quinoline. Rat liver CYP1A1/2 catalyzed the oxidation of DBM-819 to 8-hydroxy-DBM-819 and N-dehydroxypropyl-DBM-819. Human CYP3A4 was a major isozyme for the formation of O-demethyl-DBM-819 as well as N-dehydroxypropyl-DBM-819. Copyright 2001 John Wiley & Sons, Ltd. [source]

    In vitro biotransformation of imatinib by the tumor expressed CYP1A1 and CYP1B1

    Bertrand Rochat
    Abstract The main objective of the study was to examine the biotransformation of the anticancer drug imatinib in target cells by incubating it with oxidoreductases expressed in tumor cells. The second objective was to obtain an in silico prediction of the potential activity of imatinib metabolites. An in vitro enzyme kinetic study was performed with cDNA expressed human oxidoreductases and LC-MS/MS analysis. The kinetic parameters (Km and Vmax) were determined for six metabolites. A molecular modeling approach was used to dock these metabolites to the target Abl or Bcr-Abl kinases. CYP3A4 isozyme showed the broadest metabolic capacity, whereas CYP1A1, CYP1B1 and FMO3 isozymes biotransformed imatinib with a high intrinsic clearance. The predicted binding modes for the metabolites to Abl were comparable to that of the parent drug, suggesting potential activity. These findings indicate that CYP1A1 and CYP1B1, which are known to be overexpressed in a wide range of tumors, are involved in the biotransformation of imatinib. They could play a role in imatinib disposition in the targeted stem, progenitor and differentiated cancer cells, with a possible contribution of the metabolites toward the activity of the drug. Copyright 2008 John Wiley & Sons, Ltd. [source]

    Utilization of an Alternative Carbon Source for Efficient Production of Human ,1 -Antitrypsin by Genetically Engineered Rice Cell Culture

    Masaaki Terashima
    Human ,1 -antitrypsin was produced by genetically engineered rice cells using promoter and signal peptide of a rice ,-amylase isozyme. Batch and continuous cultures were employed to investigate the effects of alternative carbon sources on the ,1 -antitrypsin production. While this expression system is inducible by sugar depletion, we have found that the productivity of ,1 -antitrypsin increased 2.4- to 3.4-fold, compared with the control medium without carbon source, in medium containing an alternative carbon source, such as pyruvic acid and glyoxylic acid. The accumulated ,1 -antitrypsin in the medium containing pyruvic acid reached 18.2,24.2 mg/g-dry cell in 50,70 h by batch culture. [source]

    A re-assessment of the taxonomy of Lens Mill. (Leguminosae, Papilionoideae, Vicieae)

    Three taxonomic problems exist within the genus Lens. The first is the lark of agreement on classification and rank at the specific and sub-specific levels; the second involves the relationship between the recently distinguished L lamottei and L odemensis or L tomentosus and the third is the unreliability of stipule orientation as the primary character to distinguish between L odemensic and L. nigricans. The objectives of this study were to address these problems by investigating the classification of Lens in the light of evidence relating to crossability and phenetic relations, to idcntify morphological markers for taxon delimitation within the genus Lens., with special reference to L. lamottei, L nigricans and L odemensis, and to determine whether the taxon delimitation is supported by isozyme and RAPD evidence. As a result of these studies two new combinations are proposed, with L odemensis and I tamentosus being reduced to sub-species of L culinaris. A classification, key and descriptions of the accepted taxa within the genus are presented. [source]

    Selection and optimization of MCF-7 cell line for screening selective inhibitors of 11,-hydroxysteroid dehydrogenase 2

    Chi Hyun Kim
    Abstract An 11,-hydroxysteroid dehydrogenase type 1 (11,-HSD1) produces glucocorticoid (GC) from 11-keto metabolite, and its modulation has been suggested as a novel approach to treat metabolic diseases. In contrast, type 2 isozyme 11,-HSD2 is involved in the inactivation of glucocorticoids (GCs), protecting the non-selective mineralocorticoid receptor (MR) from GCs in kidney. Therefore, when 11,-HSD1 inhibitors are pursued to treat the metabolic syndrome, preferential selectivity of inhibitors for type 1 over type 2 isozyme is rather important than inhibitory potency. Primarily, to search for cell lines with 11,-HSD2 activity, we investigated the expression profiles of enzymes or receptors relevant to GC metabolism in breast, colon, and bone-derived cell lines. We demonstrated that MCF-7 cells had high expression for 11,-HSD2, but not for 11,-HSD1 with its cognate receptor. Next, for the determination of enzyme activity indirectly, we adopted homogeneous time resolved fluorescence (HTRF) cortisol assay. Obviously, the feasibility of HTRF to cellular 11,-HSD2 was corroborated by constructing inhibitory response to an 11b-HSD2 inhibitor glycyrrhetinic acid (GA). Taken together, MCF-7 that overexpresses type 2 but not type 1 enzyme is chosen for cellular 11,-HSD2 assay, and our results show that a nonradioactive HTRF assay is applicable for type 2 as well as type 1 isozyme. Copyright 2010 John Wiley & Sons, Ltd. [source]

    Enantioselectivity of inhibition of cytochrome P450 3A4 (CYP3A4) by ketoconazole: Testosterone and methadone as substrates

    CHIRALITY, Issue 2 2004
    Shahrzad Dilmaghanian
    Abstract Racemic ketoconazole (KTZ) was the first orally active azole antifungal agent used in clinical practice and has become widely used in the treatment of mucosal fungal infections associated with AIDS immunosuppression and cancer chemotherapy. However, the use of KTZ has been limited because of adverse drug,drug interactions. KTZ blocks ergosterol biosynthesis by inhibiting the fungal cytochrome P450 (CYP51). KTZ is also a potent inhibitor of human cytochrome P450 3A4 (CYP3A4) enzyme, the major drug-metabolizing CYP isozyme in the human liver. We examined the enantioselective differences of KTZ in the inhibition of human CYP3A4 and in antifungal action. Dextro - and levo -KTZ exhibited modest enantioselective differences with respect to CYP3A4 inhibition of testosterone and methadone metabolism. For both substrates levo -KTZ was approximately a 2-fold more potent inhibitor. We examined the enantioselective differences in the in vitro activity of KTZ against medically relevant species of Candida and Aspergillus, as well as Cryptococcus neoformans. Overall, levo -KTZ was 2,4-fold more active than dextro -KTZ. Therefore, levo -KTZ is a more potent inhibitor of CYP3A4 and has stronger in vitro antifungal activity. Chirality 16:79,85, 2004. 2004 Wiley-Liss, Inc. [source]

    Role of neuronal nitric oxide synthase in response to hypertonic saline loading in rats

    ACTA PHYSIOLOGICA, Issue 4 2004
    R. Wangensteen
    Abstract Aims:, This study analyses the influence of neuronal nitric oxide synthase (nNOS) blockade with 7-nitroindazole (7NI) on the haemodynamic and renal response to a hypertonic saline load (HSL). We also evaluated the effects of non-specific NOS inhibitor N, -nitro- l -arginine methyl ester (l -NAME). Methods:, The following groups were used: controls, rats treated with 7NI at 0.5 or 5 mg kg,1, and rats treated with l -NAME at 0.5 or 5 mg kg,1. A further five groups received an isotonic saline load (ISL). Results:, Mean arterial pressure (MAP) was significantly increased in control rats after HSL. MAP was further increased in both 7NI-treated groups, and the l -NAME groups showed marked dose-related pressor responses. During ISL, MAP was only significantly increased in the group treated with 5 mg kg,1 of l -NAME. The pressure,natriuresis relationship during the experimental period after the HSL was reduced in the 7NI group treated with 5 mg kg,1 and severely attenuated in both l -NAME groups. The increase in plasma sodium was significantly greater after the HSL in both 7NI groups and both l -NAME groups compared with controls. Conclusions:, The present results suggest that nNOS and other NOS isozymes play a counter-regulatory role in the pressor response to HSL. Moreover, the blockade of nNOS with the higher dose of 7NI produces a blunted pressure,natriuresis relationship in response to the HSL. Finally, it is concluded that nNOS participates in the homeostatic cardiovascular and renal response to hypertonic saline loading by attenuating the blood pressure increase and hypernatremia, and facilitating natriuresis. [source]

    Reduced operant ethanol self-administration and in vivo mesolimbic dopamine responses to ethanol inPKC,-deficient mice

    M. Foster Olive
    Abstract There is increasing evidence that individual protein kinase C (PKC) isozymes mediate specific effects of ethanol on the nervous system. In addition, multiple lines of evidence suggest that the mesoaccumbens dopamine reward system is critically involved in the rewarding and reinforcing effects of ethanol. Yet little is known about the role of individual PKC isozymes in ethanol reinforcement processes or in regulation of mesolimbic systems. In this study, we report that mice lacking the epsilon isoform of PKC (PKC,) show reduced operant ethanol self-administration and an absence of ethanol-induced increase in extracellular dopamine levels in the nucleus accumbens. PKC, null mice exhibited a 53% decrease in alcohol-reinforced operant responses under basal conditions, as well as following ethanol deprivation. Behavioural analysis revealed that while both genotypes had the same number of drinking bouts following deprivation, PKC, null mice demonstrated a 61% reduction in number of ethanol reinforcers per bout and a 57% reduction in ethanol-reinforced response rate. In vivo microdialysis experiments showed that, in contrast to wild-type mice, PKC, null mice exhibited no change in extracellular levels of dopamine in the nucleus accumbens following acute administration of ethanol (1 and 2 g/kg i.p.), while mesolimbic dopamine responses to cocaine (20 mg/kg i.p.) or high potassium (100 m m) in these mice were comparable with that of wild-types. These data provide further evidence that increases in extracellular mesolimbic dopamine levels contribute to the reinforcing effects of ethanol, and indicate that pharmacological agents inhibiting PKC, may be useful in the treatment of alcohol dependence. [source]

    Purification of three aminotransferases from Hydrogenobacter thermophilus TK-6 , novel types of alanine or glycine aminotransferase

    FEBS JOURNAL, Issue 8 2010
    Enzymes, catalysis
    Aminotransferases catalyse synthetic and degradative reactions of amino acids, and serve as a key linkage between central carbon and nitrogen metabolism in most organisms. In this study, three aminotransferases (AT1, AT2 and AT3) were purified and characterized from Hydrogenobacter thermophilus, a hydrogen-oxidizing chemolithoautotrophic bacterium, which has been reported to possess unique features in its carbon and nitrogen anabolism. AT1, AT2 and AT3 exhibited glutamate:oxaloacetate aminotransferase, glutamate:pyruvate aminotransferase and alanine:glyoxylate aminotransferase activities, respectively. In addition, both AT1 and AT2 catalysed a glutamate:glyoxylate aminotransferase reaction. Interestingly, phylogenetic analysis showed that AT2 belongs to aminotransferase family IV, whereas known glutamate:pyruvate aminotransferases and glutamate:glyoxylate aminotransferases are members of family I,. In contrast, AT3 was classified into family I, distant from eukaryotic alanine:glyoxylate aminotransferases which belong to family IV. Although Thermococcus litoralis alanine:glyoxylate aminotransferase is the sole known example of family I alanine:glyoxylate aminotransferases, it is indicated that this alanine:glyoxylate aminotransferase and AT3 are derived from distinct lineages within family I, because neither high sequence similarity nor putative substrate-binding residues are shared by these two enzymes. To our knowledge, this study is the first report of the primary structure of bacterial glutamate:glyoxylate aminotransferase and alanine:glyoxylate aminotransferase, and demonstrates the presence of novel types of aminotransferase phylogenetically distinct from known eukaryotic and archaeal isozymes. [source]

    Down-regulation of heme oxygenase-2 is associated with the increased expression of heme oxygenase-1 in human cell lines

    FEBS JOURNAL, Issue 23 2006
    Yuanying Ding
    Intracellular heme concentrations are maintained in part by heme degradation, which is catalyzed by heme oxygenase. Heme oxygenase consists of two structurally related isozymes, HO-1 and HO-2. Recent studies have identified HO-2 as a potential oxygen sensor. To gain further insights into the regulatory role of HO-2 in heme homeostasis, we analyzed the expression profiles of HO-2 and the biochemical consequences of HO-2 knockdown with specific short interfering RNA (siRNA) in human cells. Both HO-2 mRNA and protein are expressed in the eight human cancer cell lines examined, and HO-1 expression is detectable in five of the cell lines, including HeLa cervical cancer and HepG2 hepatoma. Down-regulation of HO-2 expression with siRNA against HO-2 (siHO-2) caused induction of HO-1 expression at both mRNA and protein levels in HeLa and HepG2 cells. In contrast, knockdown of HO-1 expression did not noticeably influence HO-2 expression. HO-2 knockdown prolonged the half-life of HO-1 mRNA twofold in HeLa cells. Transient transfection assays in HeLa cells revealed that the 4.5-kb human HO-1 gene promoter was activated with selective knockdown of HO-2 in a sequence-dependent manner. Moreover, HO-2 knockdown caused heme accumulation in HeLa and HepG2 cells only when exposed to exogenous hemin. HO-2 knockdown may mimic a certain physiological change that is important in the maintenance of cellular heme homeostasis. These results suggest that HO-2 may down-regulate the expression of HO-1, thereby directing the co-ordinated expression of HO-1 and HO-2. [source]

    Identification of two cysteine residues involved in the binding of UDP-GalNAc to UDP-GalNAc:polypeptide N -acetylgalactosaminyltransferase 1 (GalNAc-T1)

    FEBS JOURNAL, Issue 17 2002
    Mari Tenno
    Biosynthesis of mucin-type O-glycans is initiated by a family of UDP-GalNAc:polypeptide N -acetylgalactosaminyltransferases, which contain several conserved cysteine residues among the isozymes. We found that a cysteine-specific reagent, p- chloromercuriphenylsulfonic acid (PCMPS), irreversibly inhibited one of the isozymes (GalNAc-T1). Presence of either UDP-GalNAc or UDP during PCMPS treatment protected GalNAc-T1 from inactivation, to the same extent. This suggests that GalNAc-T1 contains free cysteine residues interacting with the UDP moiety of the sugar donor. For the functional analysis of the cysteine residues, several conserved cysteine residues in GalNAc-T1 were mutated individually to alanine. All of the mutations except one resulted in complete inactivation or a drastic decrease in the activity, of the enzyme. We identified only Cys212 and Cys214, among the conserved cysteine residues in GalNAc-T1, as free cysteine residues, by cysteine-specific labeling of GalNAc-T1. To investigate the role of these two cysteine residues, we generated cysteine to serine mutants (C212S and C214S). The serine mutants were more active than the corresponding alanine mutants (C212A and C214A). Kinetic analysis demonstrated that the affinity of the serine-mutants for UDP-GalNAc was decreased, as compared to the wild type enzyme. The affinity for the acceptor apomucin, on the other hand, was essentially unaffected. The functional importance of the introduced serine residues was further demonstrated by the inhibition of all serine mutant enzymes with diisopropyl fluorophosphate. In addition, the serine mutants were more resistant to modification by PCMPS. Our results indicate that Cys212 and Cys214 are sites of PCMPS modification, and that these cysteine residues are involved in the interaction with the UDP moiety of UDP-GalNAc. [source]

    Group IID heparin-binding secretory phospholipase A2 is expressed in human colon carcinoma cells and human mast cells and up-regulated in mouse inflammatory tissues

    FEBS JOURNAL, Issue 11 2002
    Makoto Murakami
    Group IID secretory phospholipase A2 (sPLA2 -IID), a heparin-binding sPLA2 that is closely related to sPLA2 -IIA, augments stimulus-induced cellular arachidonate release in a manner similar to sPLA2 -IIA. Here we identified the residues of sPLA2 -IID that are responsible for heparanoid binding, are and therefore essential for cellular function. Mutating four cationic residues in the C-terminal portion of sPLA2 -IID resulted in abolition of its ability to associate with cell surface heparan sulfate and to enhance stimulus-induced delayed arachidonate release, cyclooxygenase-2 induction, and prostaglandin generation in 293 cell transfectants. As compared with several other group II subfamily sPLA2s, which were equally active on A23187- and IL-1-primed cellular membranes, sPLA2 -IID showed apparent preference for A23187-primed membranes. Several human colon carcinoma cell lines expressed sPLA2 -IID and sPLA2 -X constitutively, the former of which was negatively regulated by IL-1. sPLA2 -IID, but not other sPLA2 isozymes, was expressed in human cord blood-derived mast cells. The expression of sPLA2 -IID was significantly altered in several tissues of mice with experimental inflammation. These results indicate that sPLA2 -IID may be involved in inflammation in cell- and tissue-specific manners under particular conditions. [source]