Home About us Contact | |||
Isometric Contractions (isometric + contraction)
Selected AbstractsTail arteries from chronically spinalized rats have potentiated responses to nerve stimulation in vitroTHE JOURNAL OF PHYSIOLOGY, Issue 2 2004Melanie Yeoh Patients with severe spinal cord lesions that damage descending autonomic pathways generally have low resting arterial pressure but bladder or colon distension or unheeded injuries may elicit a life-threatening hypertensive episode. Such episodes (known as autonomic dysreflexia) are thought to result from the loss of descending baroreflex inhibition and/or plasticity within the spinal cord. However, it is not clear whether changes in the periphery contribute to the exaggerated reflex vasoconstriction. The effects of spinal transection at T7,8 on nerve- and agonist-evoked contractions of the rat tail artery were investigated in vitro. Isometric contractions of arterial segments were recorded and responses of arteries from spinalized animals (,spinalized arteries') and age-matched and sham-operated controls were compared. Two and eight weeks after transection, nerve stimulation at 0.1,10 Hz produced contractions of greater force and duration in spinalized arteries. At both stages, the ,-adrenoceptor antagonists prazosin (10 nm) and idazoxan (0.1 ,m) produced less blockade of nerve-evoked contraction in spinalized arteries. Two weeks after transection, spinalized arteries were supersensitive to the ,1 -adrenoceptor agonist phenylephrine, and the ,2 -adrenoceptor agonist, clonidine, but 8 weeks after transection, spinalized arteries were supersensitive only to clonidine. Contractions of spinalized arteries elicited by 60 mm K+ were larger and decayed more slowly at both stages. These findings demonstrate that spinal transection markedly increases nerve-evoked contractions and this can, in part, be accounted for by increased reactivity of the vascular smooth muscle to vasoconstrictor agents. This hyper-reactivity may contribute to the genesis of autonomic dysreflexia in patients. [source] Evidence from proprioception of fusimotor coactivation during voluntary contractions in humansEXPERIMENTAL PHYSIOLOGY, Issue 3 2008Trevor J. Allen In experiments on position sense at the elbow joint in the horizontal plane, blindfolded subjects were required to match the position of one forearm (reference) by placement of their other arm (indicator). Position errors were measured after conditioning elbow muscles of the reference arm with an isometric contraction while the arm was held either flexed or extended. The difference in errors after the two forms of conditioning was large when the conditioned muscles remained relaxed during the matching process and it became less when elbow muscles were required to lift a load during the match (10 and 25% of maximal voluntary contraction, respectively). Errors from muscle conditioning were attributed to signals arising in muscle spindles and were hypothesized to result from the thixotropic property of passive intrafusal fibres. Active muscle does not exhibit thixotropy. It is proposed that during a voluntary contraction the errors after conditioning are less, because the spindles become coactivated through the fusimotor system. The distribution of errors is therefore seen to be a reflection of fusimotor recruitment thresholds. For elbow flexors most, but not all, fusimotor fibres appear to be recruited by 10% of a maximal contraction. [source] Effect of dopamine on rat diaphragm apoptosis and muscle performanceEXPERIMENTAL PHYSIOLOGY, Issue 4 2006Janet D. Pierce The purpose of this study was to determine whether dopamine (DA) decreases diaphragm apoptosis and attenuates the decline in diaphragmatic contractile performance associated with repetitive isometric contraction using an in vitro diaphragm preparation. Strenuous diaphragm contractions produce free radicals and muscle apoptosis. Dopamine is a free radical scavenger and, at higher concentrations, increases muscle contractility by simulating ,2 -adrenoreceptors. A total of 47 male Sprague,Dawley rats weighing 330,450 g were used in a prospective, randomized, controlled in vitro study. Following animal anaesthetization, diaphragms were excised, and muscle strips prepared and placed in a temperature-controlled isolated tissue bath containing Krebs,Ringer solution (KR) or KR plus 100 ,m DA. The solutions were equilibrated with oxygen (O2) at 10, 21 or 95% and 5% carbon dioxide, with the balance being nitrogen. Diaphragm isometric twitch and subtetanic contractions were measured intermittently over 65 min. The diaphragms were then removed and, using a nuclear differential dye uptake method, the percentages of normal, apoptotic and necrotic nuclei were determined using fluorescent microscopy. There were significantly fewer apoptotic nuclei in the DA group diaphragms than in the KR-only group diaphragms in 10 and 21% O2 following either twitch or subtetanic contractions. Dopamine at 100 ,m produced only modest increases in muscle performance in both 10 and 21% O2. The attenuation of apoptosis by DA was markedly greater than the effect of DA on muscle performance. Dopamine decreased diaphragmatic apoptosis, perhaps by preventing the activation of intricate apoptotic pathways, stimulating antiapoptotic mechanisms and/or scavenging free radicals. [source] Prediction of Cardiorespiratory Fitness in Older Men Infected with the Human Immunodeficiency Virus: Clinical Factors and Value of the Six-Minute Walk DistanceJOURNAL OF AMERICAN GERIATRICS SOCIETY, Issue 11 2009Krisann K. Oursler MD OBJECTIVES: To investigate factors related to cardiorespiratory fitness in older human immunodeficiency virus (HIV)-infected patients and to explore the utility of 6-minute walk distance (6-MWD) in measuring fitness. DESIGN: Cross-sectional study in clinic-based cohort. SETTING: Veterans Affairs Medical Center, Baltimore, Maryland. PARTICIPANTS: Forty-three HIV-infected men, median age 57 (range 50,82), without recent acquired immunodeficiency syndrome,related illness and receiving antiretroviral (ARV) therapy. MEASUREMENTS: Peak oxygen utilization (VO2peak) according to treadmill graded exercise testing, 6-MWD, grip strength, quadriceps maximum voluntary isometric contraction, cross-sectional area, muscle quality, and muscle adiposity. RESULTS: There was a moderate correlation between VO2peak (mean ± SD; 18.4 ± 5.6 mL/kg per minute) and 6-MWD (514 ± 91 m) (r=0.60, P<.001). VO2peak was lower in subjects with hypertension (16%, P<.01) and moderate anemia (hemoglobin 10,13 gm/dL; 15%, P=.09) than in subjects without these conditions. CD4 cell count (median 356 cells/mL, range 20,1,401) and HIV-1 viral load (84% nondetectable) were not related to VO2peak. Among muscle parameters, only grip strength was an independent predictor of VO2peak. Estimation of VO2peak using linear regression, including age, 6-MWD, grip strength, and hypertension as independent variables, explained 61% of the variance in VO2peak. CONCLUSION: Non-AIDS-related comorbidity predicts cardiorespiratory fitness in older HIV-infected men receiving ARV therapy. The 6-MWD is a valuable measure of fitness in this patient population, but a larger study with diverse subjects is needed. [source] Sevoflurane- and Desflurane-induced human myocardial post-conditioning through Phosphatidylinositol-3-kinase/Akt signallingACTA ANAESTHESIOLOGICA SCANDINAVICA, Issue 7 2009L. ZHU Background: The role of phosphatidylinositol-3-kinase (PI3K) in sevoflurane- and desflurane-induced myocardial post-conditioning remains unknown. Methods: We recorded isometric contraction of isolated human right atrial trabeculae (oxygenated Tyrode's at 34 °C, stimulation frequency 1 Hz). In all groups, a 30-min hypoxic period was followed by a 60-min reoxygenation period. At the onset of reoxygenation, muscles were exposed to 5 min of sevoflurane 1%, 2%, and 3%, and desflurane 3%, 6%, and 9%. In separate groups, sevoflurane 2% and desflurane 6% were administered in the presence of 100 nM wortmannin, a PI3K inhibitor. Recovery of force after the 60-min reoxygenation period was compared between groups (mean ± SD). Result: As compared with the Control group (49 ± 7% of baseline) PostC by sevoflurane 1%, 2%, and 3% (78 ± 4%, 79 ± 5%, and 85 ± 4% of baseline, respectively) and desflurane 3%, 6%, and 9% (74 ± 5%, 84 ± 4%, and 86 ± 11% of baseline, respectively) enhanced the recovery of force. This effect was abolished in the presence of wortmannin (56 ± 5% of baseline for sevoflurane 2%+wortmannin; 56 ± 3% of baseline for desflurane 6%+wortmannin). Wortmannin alone had no effect on the recovery of force (57 ± 7% of baseline). Conclusion: In vitro, sevoflurane and desflurane post-conditioned human myocardium against hypoxia through activation of phosphatidylinositol-3-kinase. [source] Motor control of jaw muscles in chewing and in isometric biting with graded narrowing of jaw gapeJOURNAL OF ORAL REHABILITATION, Issue 10 2008P. A. PRÖSCHEL Summary, When a certain bite force is applied during unilateral chewing, the combination of jaw elevator muscle activities is different than when a comparable force is applied in unilateral isometric biting, e.g. on a force transducer. Masticatory peak force is generated in a nearly isometric phase of the chewing cycle, with a jaw gape of about 1 mm. In contrast, peak force in isometric biting on force measuring equipment usually induces jaw gapes of 6 mm or even more. Therefore, we tested the hypothesis that the jaw gape influences relative activation of elevator muscles in unilateral isometric biting. We further examined whether such influence could explain the different activity combinations of chewing and isometric biting. In thirty asymptomatic males, masseter and temporalis activities were recorded during intermittent isometric biting with jaw gapes of 6, 5, 3, 2 and 1 mm and during unilateral chewing. Activity combinations were described by working/balancing ratios and by temporalis/masseter ratios. With decreasing jaw gape the working/balancing ratio of the posterior temporalis decreased (P < 0·002) while that of the masseter increased (P < 0·001). Likewise, the temporalis/masseter ratio on the balancing side increased (P < 0·001). With decreasing jaw gape, activity ratios of isometric biting approached ratios of chewing. We conclude that: (i) relative jaw muscle activation in isometric biting depends on the jaw gape, (ii) relative muscle activation in chewing resembles relative activation of isometric biting with a small ,chewing-like' gape. This suggests that characteristic activity combinations in chewing are mainly a result of the approximately isometric contraction during the slow closing phase of the chewing cycle. [source] Upper limb muscle imbalance in tennis elbow: A functional and electromyographic assessmentJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 12 2007Omid Alizadehkhaiyat Abstract The purpose of this study was to investigate strength, fatigability, and activity of upper limb musculature to elucidate the role of muscular imbalance in the pathophysiology of tennis elbow. Sixteen patients clinically diagnosed with tennis elbow, recruited from a university hospital upper limb orthopedic clinic, were compared with 16 control subjects with no history of upper limb musculoskeletal problem, recruited from university students and staff. Muscle strength was measured for grip, metacarpophalangeal, wrist, and shoulder on both sides. Electromyographic activity (RMS amplitude) and fatigue characteristics (median frequency slope) of five forearm and two shoulder muscles were measured during isometric contraction at 50% maximum voluntary contraction. All strength measurements showed dominance difference in C, but none in TE. In tennis elbow compared to controls, hand/wrist and shoulder strength and extensor carpi radialis (ECR) activity were reduced (p,<,0.05), while fatigue was normal. A global upper limb weakness exists in tennis elbow. This may be due to disuse and deconditioning syndrome caused by fear avoidance, and needs to be addressed in prevention and treatment. Activation imbalance among forearm muscles (reduced extensor carpi radialis activity) in tennis elbow, probably due to protective pain-related inhibition, could lead to a widespread upper limb muscle imbalance. © 2007 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 25:1651,1657, 2007 [source] Properties of the two neuromuscular compartments in a split bipennate muscleJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 6 2004Barry P. Pereira Abstract Bipennate muscles may be split along their distal aponeurosis, dividing each into two compartments. These sub-muscle units may be used in tendon transfers. This paper presents the contractile properties of the two sub-units of the flexor carpi ulnaris in a macaca fascicularis, after it was split by up to 80% of its length. The sub-muscle units were electrically stimulated and found to have independent isometric contraction, with minimal contraction recorded from the non-stimulated sub-unit. Also, the sum of the forces measured from each unit when stimulated individually, was found to be greater than the force of the whole muscle, given the same isometric conditions. The distal aponeurosis which is common allows force transmission between the compartments. Splitting the muscle along this distal aponeurosis alters this function and the force capacity of the muscle, providing a new potential for using the sub-units as grafts for tendon transfers. © 2004 Orthopaedic Research Society. Published y Elsevier Ltd. All rights reserved. [source] Determinants of force rise time during isometric contraction of frog muscle fibresTHE JOURNAL OF PHYSIOLOGY, Issue 3 2007K. A. P. Edman Force,velocity (F,V) relationships were determined for single frog muscle fibres during the rise of tetanic contraction. F,V curves obtained using isotonic shortening early in a tetanic contraction were different from those obtained at equivalent times with isovelocity shortening, apparently because changing activation early in the contraction leads, in isovelocity experiments, to changing force and changing series elastic extension. F,V curves obtained with isotonic and with isovelocity shortening are similar if the shortening velocity in the isovelocity trials is corrected for series elastic extension. There is a progressive shift in the scaling of force,velocity curves along the force axis during the course of the tetanic rise, reflecting increasing fibre activation. The time taken for F,V curves to reach the steady-state position was quite variable, ranging from about 50 ms after the onset of contraction (1,3°C) to well over 100 ms in different fibres. The muscle force at a fixed, moderately high shortening velocity relative to the force at this velocity during the tetanic plateau was taken as a measure of muscle activation. The reference velocity used was 60% of the maximum shortening velocity (Vmax) at the tetanic plateau. The estimated value of the fractional activation at 40 ms after the onset of contraction was used as a measure of the rate of activation. The rate of rise of isometric tension in different fibres was correlated with the rate of fibre activation and with Vmax during the plateau of the tetanus. Together differences in rate of activation and in Vmax accounted for 60,80% of the fibre-to-fibre variability in the rate of rise of isometric tension, depending on the measure of the force rise time used. There was not a significant correlation between the rate of fibre activation and Vmax. The steady-state F,V characteristics and the rate at which these characteristics are achieved early in contraction are seemingly independent. A simulation study based on F,V properties and series compliance in frog muscle fibres indicates that if muscle activation were instantaneous, the time taken for force to rise to 50% of the plateau value would be about 60% shorter than that actually measured from living fibres. Thus about 60% of the force rise time is a consequence of the time course of activation processes and about 40% represents time taken to stretch series compliance by activated contractile material. [source] Relationship between muscle oxygenation and electromyography activity during sustained isometric contractionCLINICAL PHYSIOLOGY AND FUNCTIONAL IMAGING, Issue 4 2008Eiji Yamada Summary The purpose of this study was to clarify the relationship between electromyography (EMG) spectrum changes and muscle oxygenation measured by near-infrared time-resolved spectroscopy (TRS). Each subject performed sustained isometric knee extension at 50% of the maximal voluntary contraction load for 1 min. Surface EMG and TRS were simultaneously recorded from the right vastus lateralis muscle. Mean power frequency (MPF) of the power spectrum was calculated every 5 s during isometric contraction using fast Fourier transform, and decrease in the slope of MPF for 1 min was calculated using the least squares method. The maximal changes in oxygenated haemoglobin and myoglobin (Oxy Hb/Mb) and in deoxygenated haemoglobin and myoglobin (Deoxy Hb/Mb) from pre-contraction values of 1 min were calculated. There were significant relationships between the decrease in the slope of MPF and the maximal changes in Oxy Hb/Mb and Deoxy Hb/Mb (P < 0·05). These findings suggested that changes in Oxy Hb/Mb and Deoxy Hb/Mb indicate muscle fatigue assessed by EMG. [source] Vastus lateralis surface and single motor unit electromyography during shortening, lengthening and isometric contractions corrected for mode-dependent differences in force-generating capacityACTA PHYSIOLOGICA, Issue 3 2009T. M. Altenburg Abstract Aim:, Knee extensor neuromuscular activity, rectified surface electromyography (rsEMG) and single motor unit EMG was investigated during isometric (60° knee angle), shortening and lengthening contractions (50,70°, 10° s,1) corrected for force,velocity-related differences in force-generating capacity. However, during dynamic contractions additional factors such as shortening-induced force losses and lengthening-induced force gains may also affect force capacity and thereby neuromuscular activity. Therefore, even after correction for force,velocity-related differences in force capacity we expected neuromuscular activity to be higher and lower during shortening and lengthening, respectively, compared to isometric contractions. Methods:, rsEMG of the three superficial muscle heads was obtained in a first session [10 and 50% maximal voluntary contraction (MVC)] and additionally EMG of (46) vastus lateralis motor units was recorded during a second session (4,76% MVC). Using superimposed electrical stimulation, force-generating capacity for shortening and lengthening contractions was found to be 0.96 and 1.16 times isometric (Iso) force capacity respectively. Therefore, neuromuscular activity during submaximal shortening and lengthening was compared with isometric contractions of respectively 1.04Iso (=1/0.96) and 0.86Iso (=1/1.16). rsEMG and discharge rates were normalized to isometric values. Results:, rsEMG behaviour was similar (P > 0.05) during both sessions. Shortening rsEMG (1.30 ± 0.11) and discharge rate (1.22 ± 0.13) were higher (P < 0.05) than 1.04Iso values (1.05 ± 0.05 and 1.03 ± 0.04 respectively), but lengthening rsEMG (1.05 ± 0.12) and discharge rate (0.90 ± 0.08) were not lower (P > 0.05) than 0.86Iso values (0.76 ± 0.04 and 0.91 ± 0.07 respectively). Conclusion:, When force,velocity-related differences in force capacity were taken into account, neuromuscular activity was not lower during lengthening but was still higher during shortening compared with isometric contractions. [source] Modulation of spinal inhibitory reflex responses to cutaneous nociceptive stimuli during upper limb movementEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2008Romildo Don Abstract In the present study we investigated the probability, latency and duration of the inhibitory component of the withdrawal reflex elicited by painful electrical stimulation of the index finger in humans. The stimulus consisted of a train of high-intensity pulses. The investigation was carried out in several upper limb muscles during isometric contractions of different strengths and during a motor sequence consisting of reaching, picking up and transporting an object. We used a new algorithm to detect and characterize the inhibitory reflex. The reflex was found in all muscles except the brachioradialis at all the isometric contraction strengths, and showed a distal-to-proximal gradient of latency and duration. Conversely, during movement the reflex probability was high (> 80%) in the anterior deltoid and triceps muscles during reaching, in the extensor carpi radialis muscle during transporting of the object, and in the first interosseous muscle during both picking up and transporting of the object. This modulation of inhibitory reflex transmission in the upper limb muscles suggests that the motor response is organized in such a way as to inhibit the overall ongoing motor task by interrupting motion during reaching and by releasing the object during transporting. This pattern of modulation appears to differ markedly from that previously reported for the excitatory component of the withdrawal reflex. Study of the nociceptive inhibitory reflexes during movement offers new and more profound insights into the functional anatomical organization of the spinal interneuronal network mediating sensory,motor integration. [source] Melatonin treatment protects against ischemia/reperfusion-induced functional and biochemical changes in rat urinary bladderJOURNAL OF PINEAL RESEARCH, Issue 3 2003Göksel, ener Abstract: Reactive oxygen metabolites play important roles in ischemia/reperfusion (I/R) injury in several systems. The aim of this study was to investigate the role of melatonin against I/R injury of the rat urinary bladder. The abdominal aorta was clamped to induce ischemia for 30 min, then the animals were subjected to 60 min of reperfusion. Melatonin (10 mg/kg, i.p.) or the vehicle (control 1% alcohol i.p.) was administered before I/R. After decapitation, the bladder was removed and the tissue was either used for functional studies or stored for measurement of products of lipid peroxidation (LP), glutathione (GSH) levels and myeloperoxidase activity (MPO). Bladder strips were suspended in oxygenated Tyrode's buffer at 37°C and isometric contractions to carbachol (CCh; 10,8,10,4 m) were recorded. In the I/R group, the contractile responses of the bladder strips were lower than those of the control group (P < 0.01,0.001) and were reversed by treatment with melatonin (P < 0.05,0.001). LP which was higher in I/R group compared with control (27.68 ± 1.69 and 10.59 ± 1.27 nmol/g, respectively; P < 0.001) was partially reversed by melatonin (19.01 ± 1.85 nmol/g; P < 0.01). Similarly, GSH showed a decrease in the I/R group compared with controls (0.27 ± 0.03 and 0.43 ± 0.04 ,mol/g, respectively; P < 0.05) and melatonin prevented this effect completely (0.45 ± 0.04 , mol/g; P < 0.05). MPO activity in the I/R group (4.19 ± 0.08 U/g) was significantly higher than that of the control group (1.41 ± 0.08 U/g; P < 0.001) and melatonin treatment reduced MPO levels compared with I/R alone (3.16 ± 0.07; P < 0.001). Melatonin almost completely reversed the low contractile responses of rat urinary bladder strips to CCh and prevented oxidative tissue damage following I/R. [source] Endotoxemia does not limit energy supply in exercising rat skeletal muscleMUSCLE AND NERVE, Issue 4 2008Benoit Giannesini PhD Abstract Although depletion in high-energy phosphorylated compounds and mitochondrial impairment have been reported in septic skeletal muscle at rest, their impact on energy metabolism has not been documented during exercise. In this study we aimed to investigate strictly gastrocnemius muscle function non-invasively, using magnetic resonance techniques in endotoxemic rats. Endotoxemia was induced by injecting animals intraperitoneally at t0 and t0 + 24 h with Klebsiella pneumoniae lipopolysaccharides (at 3 mg kg,1). Investigations were performed at t0 + 48 h during a transcutaneous electrical stimulation protocol consisting of 5.7 min of repeated isometric contractions at a frequency of 3.3 HZ. Endotoxin treatment produced a depletion in basal phosphocreatine content and a pronounced reduction in oxidative adenosine triphosphate (ATP) synthesis capacity, whereas the resting ATP concentration remained unchanged. During the stimulation period, endotoxemia caused a decrease in force-generating capacity that was fully accounted for by the loss of muscle mass. It further induced an acceleration of glycolytic ATP production and an increased accumulation of adenosine diphosphate (ADP, an important mitochondrial regulator) that allowed a near-normal rate of oxidative ATP synthesis. Finally, endotoxemia did not affect the total rate of ATP production or the ATP cost of contraction throughout the whole stimulation period. These data demonstrate that, in an acute septic phase, metabolic alterations in resting muscle do not impact energy supply in exercising muscle, likely as a result of adaptive mechanisms. Muscle Nerve, 2008 [source] Practice and endpoint accuracy with the left and right hands of old adults: The right-hemisphere aging modelMUSCLE AND NERVE, Issue 3 2008Brach Poston PhD Abstract The purpose of the study was to quantify the aging-related differences in endpoint accuracy during isometric contractions of the left and right hands based on the prediction that declines in motor performance with aging may be greater for muscles controlled by the right hemisphere. Twelve young (6 men, 25 ± 5 years) and 12 old (6 men, 76 ± 6 years) adults performed a task that involved matching the peak of a force,time trajectory to a target. The old adults were less accurate than the young men and exhibited greater endpoint error with the left hand than the right hand on day 1, but not on days 2 and 3. Although electromyographic amplitude was similar between hands, old adults exhibited greater timing variability. These findings indicate that given sufficient practice there was no difference in endpoint accuracy between the left and right hands of old adults, which is not consistent with the prediction of an asymmetrical decline in motor performance by the right-hemisphere aging model. Conversely, an inability by an old adult to achieve similar accuracy with both hands during such tasks likely indicates an underlying motor impairment. Muscle Nerve, 2007 [source] Motor unit recruitment during lengthening contractions of human wrist flexorsMUSCLE AND NERVE, Issue 11 2001Paula J. Stotz MSc Abstract The purpose of this study was to revisit the question of recruitment of motor units during lengthening contractions because of conflicting views in the literature on this subject. Motor unit activity was recorded from the flexor carpi radialis muscle of four human subjects to compare the patterns of recruitment during lengthening and isometric contractions. Lengthening contractions were produced either when the subject voluntarily stopped opposing a background load or when an additional load was imposed on the already contracting muscle. In both cases, lengthening of the active muscle was produced at a variety of speeds, from quite slow to "as fast as possible." No differences in recruitment order were observed between isometric and lengthening contractions at any speed of lengthening contraction. It is concluded that all contractions in normal humans recruit motor units in an orderly fashion from small to large, according to the size principle of motor unit recruitment. © 2001 John Wiley & Sons, Inc. Muscle Nerve 24: 1535,1541, 2001 [source] The Effect of Fatigue on the Timing of Electrical Stimulation-Evoked Muscle Contractions in People with Spinal Cord InjuryNEUROMODULATION, Issue 3 2004Peter J. Sinclair PhD Abstract This study investigated the activation dynamics of electrical stimulation-evoked muscle contractions performed by individuals with spinal cord injury (SCI). The purpose was to determine whether electrical stimulation (ES) firing patterns during cycling exercise should be altered in response to fatigue-induced changes in the time taken for force to rise and fall with ES. Seven individuals with SCI performed isometric contractions and pedaled a motorized cycle ergometer with stimulation applied to the quadriceps muscles. Both exercise conditions were performed for five minutes while the patterns of torque production were recorded. ES-evoked knee extension torque fell by 75% under isometric conditions, and the rate of force rise and decline decreased in proportion to torque (r = 0.91, r = 0.94, respectively). There was no change in the time for torque to rise to 50% of maximum levels. The time for torque to decline did increase slightly, but only during the first minute of exercise. Cycling power output fell approximately 50% during the five minutes of exercise, however, there was no change in the time taken for torque to rise or fall. The magnitude of ES-evoked muscle torques decline substantially with fatigue, however, the overall pattern of torque production remained relatively unchanged. These results suggest there is no need to alter stimulation firing patterns to accommodate fatigue during ES-evoked exercise. [source] Fluctuations in isometric muscle force can be described by one linear projection of low-frequency components of motor unit discharge ratesTHE JOURNAL OF PHYSIOLOGY, Issue 24 2009Francesco Negro The aim of the study was to investigate the relation between linear transformations of motor unit discharge rates and muscle force. Intramuscular (wire electrodes) and high-density surface EMG (13 × 5 electrode grid) were recorded from the abductor digiti minimi muscle of eight healthy men during 60 s contractions at 5%, 7.5% and 10% of the maximal force. Spike trains of a total of 222 motor units were identified from the EMG recordings with decomposition algorithms. Principal component analysis of the smoothed motor unit discharge rates indicated that one component (first common component, FCC) described 44.2 ± 7.5% of the total variability of the smoothed discharge rates when computed over the entire contraction interval and 64.3 ± 10.2% of the variability when computed over 5 s intervals. When the FCC was computed from four or more motor units per contraction, it correlated with the force produced by the muscle (62.7 ± 10.1%) by a greater degree (P < 0.001) than the smoothed discharge rates of individual motor units (41.4 ± 7.8%). The correlation between FCC and the force signal increased up to 71.8 ± 13.1% when the duration and the shape of the smoothing window for discharge rates were similar to the average motor unit twitch force. Moreover, the coefficients of variation (CoV) for the force and for the FCC signal were correlated in all subjects (R2 range = 0.14,0.56; P < 0.05) whereas the CoV for force was correlated to the interspike interval variability in only one subject (R2= 0.12; P < 0.05). Similar results were further obtained from measures on the tibialis anterior muscle of an additional eight subjects during contractions at forces up to 20% of the maximal force (e.g. FCC explained 59.8 ± 11.0% of variability of the smoothed discharge rates). In conclusion, one signal captures most of the underlying variability of the low-frequency components of motor unit discharge rates and explains large part of the fluctuations in the motor output during isometric contractions. [source] Repeated bouts of aerobic exercise lead to reductions in skeletal muscle free radical generation and nuclear factor ,B activationTHE JOURNAL OF PHYSIOLOGY, Issue 16 2008Susan V. Brooks Chronic exercise improves endurance and skeletal muscle oxidative capacity. Despite the potential importance of reactive oxygen species (ROS) generated during exercise as regulators of these adaptations, the effect of repeated bouts of aerobic exercise on ROS generation by skeletal muscles during contractions has not been examined. Our aim was to establish the impact of repeated treadmill running exercise on muscle ROS generation and activation of redox-sensitive transcription factors. Following 8 weeks of treadmill running, mice displayed an improvement in running speed that was associated with an enhanced ability of gastrocnemius (GTN) muscles to maintain force during a protocol of isometric contractions. In contrast to GTN muscles of cage-sedentary (Sed) mice, muscles from exercised (Exer) mice did not release superoxide or nitric oxide during the isometric contractions. For male mice, basal levels of nuclear factor ,B (NF,B) and activator protein-1 (AP-1) DNA binding were increased by treadmill running, and the contraction-induced activation of NF,B and AP-1 observed in muscles of Sed mice was absent in Exer muscles. Also in contrast to Sed muscles, Exer muscles displayed no reductions in glutathione or protein thiol levels in response to contraction. Our observations of decreases for Exer compared with Sed muscles in contraction-induced (i) ROS generation, (ii) activation of redox-sensitive signalling pathways, and (iii) ROS stress suggest that exercise conditioning enhances the ability of skeletal muscle to readily and rapidly detoxify ROS and/or reduces ROS generation, providing protection from ROS-induced damage and reducing signals that might act to mediate further unnecessary adaptations. [source] Influence of ionic strength on the time course of force development and phosphate release by dogfish muscle fibresTHE JOURNAL OF PHYSIOLOGY, Issue 3 2005Timothy G. West We measured the effects of ionic strength (IS), 200 (standard) and 400 mmol l,1 (high), on force and ATP hydrolysis during isometric contractions of permeabilized white fibres from dogfish myotomal muscle at their physiological temperature, 12°C. One goal was to test the validity of our kinetic scheme that accounts for energy release, work production and ATP hydrolysis. Fibres were activated by flash photolysis of the P3 -1-(2 nitrophenyl) ethyl ester of ATP (NPE-caged ATP), and time-resolved phosphate (Pi) release was detected with the fluorescent protein MDCC-PBP, N -(2[1-maleimidyl]ethyl)-7-diethylamino-coumarin-3-carboxamide phosphate binding protein. High IS slowed the transition from rest to contraction, but as the fibres approached the isometric force plateau they showed little IS sensitivity. By 0.5 s of contraction, the force and the rate of Pi release at standard and high IS values were not significantly different. A five-step reaction mechanism was used to account for the observed time courses of force and Pi release in all conditions explored here. Only the rate constants for reactions of ATP, ADP and Pi with the contractile proteins varied with IS, thus suggesting that the actin,myosin interactions are largely non-ionic. Our reaction scheme also fits previous results for intact fibres. [source] s -CARBOXYMETHYLCYSTEINE INHIBITS CARBACHOL-INDUCED CONSTRICTION OF EPITHELIUM-DENUDED RAT AND HUMAN AIRWAY PREPARATIONSCLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 5-6 2008Dragan Pavlovic SUMMARY 1The effects of s-carboxymethyl-l-cysteine (S-CMC), either administered orally to rats or incubated with tissue preparations from rats and humans, on isometric contractions of tracheal smooth muscle were investigated in the present study using an improved in vitro model of tracheal tube or ring preparations. The involvement of the tracheal epithelium in the observed effects was also investigated. 2The experimental model permitted selective perfusion of the airway tube, luminal-IN or serosal,OUT, and measurement of airway smooth muscle contraction or relaxation in preparations with (+) or without (,) epithelium (Ep), excluding direct effects of airway mucus. 3We found that oral pretreatment of rats with S-CMC (mixed with water; 200 mg/kg per day for 2 weeks), but not short pre-incubation of preparations in vitro (10,3 mol/L S-CMC for 1 h), diminished the sensitivity of ,Ep preparations to carbachol compared with controls (EC50 (,log10 mol/L) values: 5.5 ± 0.1 vs 5.8 ± 0.1, respectively, for IN perfusion (P < 0.005); 5.6 ± 0.1 vs 5.9 ± 0.1, respectively, for OUT perfusion (P < 0.005)), whereas the sensitivity of preparations to aminophylline was not affected. Normal sensitivity to carbachol stimulation was re-established if preparations were pre-incubated with capsaicin. 4It was also found that longer pre-incubation (4 h) of ring-preparations of human bronchus with S-CMC (10,5 mol/L) in vitro resulted in a diminished response to carbachol stimulation. 5In conclusion, S-CMC had small inhibitory effects on the sensitivity of rat and human airway smooth muscle to carbachol, particularly in endothelium-denuded preparations. Whether the epithelium was responding to S-CMC by producing some contracting factor(s) requires further investigation. [source] |