Isomeric Forms (isomeric + form)

Distribution by Scientific Domains


Selected Abstracts


Synthesis, Protonation and CuII Complexes of Two Novel Isomeric Pentaazacyclophane Ligands: Potentiometric, DFT, Kinetic and AMP Recognition Studies

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 1 2009
Andrés G. Algarra
Abstract The synthesis and coordination chemistry of two novel ligands, 2,6,9,12,16-pentaaza[17]metacyclophane (L1) and 2,6,9,12,16-pentaaza[17]paracyclophane (L2), is described. Potentiometric studies indicate that L1 and L2 form a variety of mononuclear complexes the stability constants of which reveal a change in the denticity of the ligand when moving from L1 to L2, a behaviour that can be qualitatively explained by the inability of the paracyclophanes to simultaneously use both benzylic nitrogen atoms for coordination to a single metal centre. In contrast, the formation of dinuclear hydroxylated complexes is more favoured for the paraL2 ligand. DFT calculations have been carried out to compare the geometries and relative energies of isomeric forms of the [CuL]2+ complexes of L1 and L2 in which the cyclophane acts either as tri- or tetradentate. The results indicate that the energy cost associated with a change in the coordination mode of the cyclophane from tri- to tetradentate is moderate for both ligands so that the actual coordination mode can be determined not only by the characteristics of the first coordination sphere but also by the specific interactions with additional nearby water molecules. The kinetics of the acid promoted decomposition of the mono- and dinuclear CuII complexes of both cyclophanes have also been studied. For both ligands, dinuclear complexes convert rapidly to mononuclear species upon addition of excess acid, the release of the first metal ion occurring within the mixing time of the stopped-flow instrument. Decomposition of the mononuclear [CuL2]2+ and [CuHL2]3+ species occurs with the same kinetics, thus showing that protonation of [CuL2]2+ occurs at an uncoordinated amine group. In contrast, the [CuL1]2+ and [CuHL1]3+ species show different decomposition kinetics indicating the existence of significant structural reorganisation upon protonation of the [CuL1]2+ species. The interaction of AMP with the protonated forms of the cyclophanes and the formation of mixed complexes in the systems Cu,L1 -AMP, Cu,L2 -AMP, and Cu,L3 -AMP, where L3 is the related pyridinophane containing the same polyamine chain and 2,6-dimethylpyridine as a spacer, is also reported. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) [source]


Calculated Enthalpies for Dimerisation of Binary, Unsaturated, Main-Group Element Hydrides as a Means to Analyse Their Potential for Multiple Bonding

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 11 2003
Hans-Jörg Himmel
Abstract Herein, the dimerisation of subvalent, binary, main-group element hydrides with the potential for multiple bonding is studied using both hybrid DFT (B3LYP) and ab initio [MP2 and CCSD(T)] methods. The [2+2] cycloaddition is an important and characteristic reaction of derivatives of ethylene. A comparison of dimerisation reactions for several compounds with the potential for multiple bonding should, therefore, shed light on the properties of these species. Our study includes the hydrides E2H2 (E = B, Al, Ga, N P or As), E2H4 (E = C, Si or Ge) and ENH4 (E = B, Al or Ga) and their dimers. Several isomeric forms of the monomers and dimers have to be considered. The trends within a group and a period are established and the factors responsible for them are discussed. It turns out that, generally, the enthalpies for dimerisation increase for heavier homologues, reflecting that the most important factor is the reduced strength of the E,E bonds in the monomers prior to dimerisation and, to some degree, also the reduced ring strain in the cyclic dimers. The exceptions are the dimerisations of B2H2 and Al2H2, both of which lead to the tetrahedral E4H4 species (E = B or Al). Dimerisation of Al2H2 is associated with a smaller enthalpy than that for the dimerisation of B2H2. Comparisons and analyses are made complicated because of the changes in the structures of the isomeric global minima between homologues. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003) [source]


Sensitized Lanthanide-Ion Luminescence with Aryl-Substituted N -(2-Nitrophenyl)acetamide-Derived Chromophores

HELVETICA CHIMICA ACTA, Issue 11 2009
Michael Andrews
Abstract The syntheses of the two tetraazamacrocyclic ligands L1 and L2 bearing a [(methoxy-2-nitrophenyl)amino]carbonyl chromophore, i.e., an N -(methoxy-2-nitrophenyl)acetamide moiety, together with their corresponding lanthanide-ion complexes are described. A combined spectroscopic (UV/VIS, 1H-NMR), structural (X-ray), and theoretical (DFT) investigation revealed that the absorption properties of the chromophores were dictated by the extent of electronic delocalisation, which in turn was determined by the position of the MeO substituent at the aromatic ring. X-Ray crystallographic studies showed that when attached to the macrocycle, both isomeric forms of the N -(methoxy-2-nitrophenyl)acetamide unit can participate in coordination, via the CO, to an encapsulated potassium cation. Luminescence measurements confirmed that such a binding mode also exists in solution for the corresponding lanthanide complexes (q ca. ,1), with the para -MeO derivative allowing longer wavelength sensitization (,ex 330,nm). [source]


DFT study of core-modified porphyrin isomers

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 1 2007
Y. Soujanya
Abstract B3LYP/6-311+G** calculations were performed systematically on 1,2 (syn) and 1,3 (anti) tautomeric forms of oxa- and thia- core-modified porphyrin isomers, which resulted in a total of 86 structures. The structural and energetic variation in all the isomers were analyzed. In corrphycene, hemiporphycene and porphycene the Z forms are more stable compared to the corresponding E forms in both the anti and syn oxa- and thiaporphyrin isomers. In contrast, in the syn isomeric forms of [3.0.1.0], [3.1.0.0] and [4.0.0.0] oxaporphyrins and in both syn and anti forms of thiaporphyrin isomers, Z forms are less stable. The HOMO and LUMO values are both negative and varied in a narrow zone, indicating no dramatic effect on the position of heteroatom substitution on the redox properties. The effect of geometric constraints due to the alteration of meso-bridge length and the hetero atom disposition in the porphyrin core on the relative stabilities of the isomers is analyzed. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007 [source]


Asymmetric Reduction of Activated Alkenes by Pentaerythritol Tetranitrate Reductase: Specificity and Control of Stereochemical Outcome by Reaction Optimisation

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 17 2009
Anna Fryszkowska
Abstract We show that pentaerythritol tetranitrate reductase (PETNR), a member of the ,ene' reductase old yellow enzyme family, catalyses the asymmetric reduction of a variety of industrially relevant activated ,,,-unsaturated alkenes including enones, enals, maleimides and nitroalkenes. We have rationalised the broad substrate specificity and stereochemical outcome of these reductions by reference to molecular models of enzyme-substrate complexes based on the crystal complex of the PETNR with 2-cyclohexenone 4a. The optical purity of products is variable (49,99% ee), depending on the substrate type and nature of substituents. Generally, high enantioselectivity was observed for reaction products with stereogenic centres at C, (>99% ee). However, for the substrates existing in two isomeric forms (e.g., citral 11a or nitroalkenes 18,19a), an enantiodivergent course of the reduction of E/Z -forms may lead to lower enantiopurities of the products. We also demonstrate that the poor optical purity obtained for products with stereogenic centres at C, is due to non-enzymatic racemisation. In reactions with ketoisophorone 3a we show that product racemisation is prevented through reaction optimisation, specifically by shortening reaction time and through control of solution pH. We suggest this as a general strategy for improved recovery of optically pure products with other biocatalytic conversions where there is potential for product racemisation. [source]


Trends of the bonding effect on the performance of DFT methods in electric properties calculations: A pattern recognition and metric space approach on some XY2 (X = O, S and Y = H, O, F, S, Cl) molecules

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 2 2010
Christos Christodouleas
Abstract A test set of 10 molecules (open and ring forms of ozone and sulfur dioxide as well as water and hydrogen sulfide and their respective fluoro- and chloro-substituted analogs) of specific atmospheric interest has been formed as to assess the performance of various density functional theory methods in (hyper)polarizability calculations against well-established ab initio methods. The choice of these molecules was further based on (i) the profound change in the physics between isomeric systems, e.g., open (C2v) and ring (D3h) forms of ozone, (ii) the relation between isomeric forms, e.g., open and ring form of sulfur dioxide (both of C2v symmetry), and (iii) the effect of the substitution, e.g., in fluoro- and chloro-substituted water analogs. The analysis is aided by arguments chosen from the information theory, graph theory, and pattern recognition fields of Mathematics: In brief, a multidimensional space is formed by the methods which are playing the role of vectors with the independent components of the electric properties to act as the coordinates of these vectors, hence the relation between different vectors (e.g., methods) can be quantified by a proximity measure. Results are in agreement with previous studies revealing the acceptable and consistent behavior of the mPW1PW91, B3P86, and PBE0 methods. It is worth noting the remarkable good performance of the double hybrid functionals (namely: B2PLYP and mPW2PLYP) which are for the first time used in calculations of electric response properties. © 2009 Wiley Periodicals, Inc. J Comput Chem 2010 [source]


Structures and stability of lithium monosilicide clusters SiLin (n = 4,16): What is the maximum number, magic number, and core number for lithium coordination to silicon?

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 11 2008
Ning He
Abstract In the coordination, hypervalent and cluster chemistry, three important characteristic properties are the maximum coordination number, magic number, and core coordination number. Yet, few studies have considered these three numbers at the same time for an MLn cluster with n larger than 8. In this article, we systematically studied the three properties of SiLin (n = 4,16) clusters at the B3LYP/6-31G(d), B3LYP/6-311++G(2d), and CCSD(T)/6-311++G(3df)//B3LYP/6-311++G(2d) (for energy only) levels. Various isomeric forms with different symmetries were calculated. For each SiLin (n = 4,9), silicon cohesive energy (cE) from SiLin , Si + Lin reaction, vertical ionization potential (vIP), and vertical electron affinity (vEA) were obtained for the lowest-energy isomer. We found that the maximum Li-coordination number of Si is 9, which is the largest number among the known MLin clusters. All cE, vIP, and vEA values predicted that 6 is the magic Li-coordination number of Si. For small SiLin (n , 6) clusters, Li atoms favor direct coordination to Si, whereas for larger SiLin (n , 7) clusters, there is a core cluster that is surrounded by excessive Li atoms. The core Li-coordination number is 6 for SiLin (n = 7,8), 7 for SiLin (n = 9,10), 8 for SiLin (n = 11,15) and 9 for SiLin (n , 16). Through the calculations, we verified the relationship between the structure and stability of SiLin with the maximum coordination number, magic number, and core coordination number. © 2008 Wiley Periodicals, Inc. J Comput Chem, 2008 [source]


Reactivity of Tyr,Leu and Leu,Tyr dipeptides: identification of oxidation products by liquid chromatography,tandem mass spectrometry

JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 5 2009
Conceição Fonseca
Abstract The exposure of peptides and proteins to reactive hydroxyl radicals results in covalent modifications of amino acid side-chains and protein backbone. In this study we have investigated the oxidation the isomeric peptides tyrosine,leucine (YL) and leucine,tyrosine (LY), by the hydroxyl radical formed under Fenton reaction (Fe2+/H2O2). Through mass spectrometry (MS), high-performance liquid chromatography (HPLC-MS) and electrospray tandem mass spectrometry (HPLC-MSn) measurements, we have identified and characterized the oxidation products of these two dipeptides. This approach allowed observing and identifying a wide variety of oxidation products, including isomeric forms of the oxidized dipeptides. We detected oxidation products with 1, 2, 3 and 4 oxygen atoms for both peptides; however, oxidation products with 5 oxygen atoms were only present in LY. LY dipeptide oxidation leads to more isomers with 1 and 2 oxygen atoms than YL (3 vs 5 and 4 vs 5, respectively). Formation of the peroxy group occurred preferentially in the C -terminal residue. We have also detected oxidation products with double bonds or keto groups, dimers (YL,YL and LY,LY) and other products as a result of cross-linking. Both amino acids in the dipeptides were oxidized although the peptides showed different oxidation products. Also, amino acid residues have shown different oxidation products depending on the relative position on the dipeptide. Results suggest that amino acids in the C -terminal position are more prone to oxidation. Copyright © 2009 John Wiley & Sons, Ltd. [source]


NMR and UPLC-qTOF-MS/MS characterisation of novel phenylethanol derivatives of phenylpropanoid glucosides from the leaves of strawberry (Fragaria × ananassa cv. Jonsok)

PHYTOCHEMICAL ANALYSIS, Issue 5 2009
Kati Hanhineva
Abstract Introduction Strawberry (Fragaria × ananassa) is rich in polyphenols, particularly anthocyanins, flavonols, condensed tannins and ellagic tannins. In addition to the fruits, the leaves of strawberry also contain a wide range of phenolic compound classes, but have not been investigated to the same extent as the fruit. Objective To characterise a metabolite group present in the leaves of strawberry, that was not amenable for identification based on earlier information available in the literature. Methodology Methanolic extracts of strawberry leaves were analysed by UPLC-qTOF-MS/MS and iterative quantum mechanical NMR spectral analysis. Results The structures of phenylethanol derivatives of phenylpropanoid glucosides Eutigoside A ( F4) and its two isomeric forms 2-(4-hydroxyphenyl)ethyl-[6- O -(Z)-coumaroyl]- ,- d -glucopyranoside ( F6) and 4-(2-hydroxyethyl)phenyl-[6- O -(e)-coumaroyl]- ,- d -glucopyranoside ( F1) were resolved by NMR and UPLC-qTOF-MS/MS. In addition, two other derivatives of phenylpropanoid glucosides similar to Eutigoside A but possessing different phenolic acid moieties, namely Grayanoside A ( F5) and 2-(4-hydroxyphenyl)ethyl-[6- O -(e)-caffeoyl]- ,- d -glucopyranoside ( F14), were similarly identified. Also, accurate characteristic coupling constants for the subunits are reported and their usefulness in structural analysis is highlighted. Conclusion Chemical analysis of the leaves of strawberry (Fragaria × ananassa cv. Jonsok) resulted in the identification of a compound class, phenylethanol derivatives of phenylpropanoid glycosides, not previously found in strawberry. Copyright © 2009 John Wiley & Sons, Ltd. [source]


trans -(2-Methyl­thio­benzoato- O)phenylbis­(tri­phenyl­phosphine)­palladium(II), two conformational isomers

ACTA CRYSTALLOGRAPHICA SECTION C, Issue 3 2000
Gert J. Kruger
The title compound, trans -[Pd(C6H5)(C8H7O2S)(C18H15P)2], crystallizes in two modifications differing only in the orientation of the 2-methyl­thio­benzoato ligand. In both cases, this ligand binds to the metal centre via one O atom in a monodentate fashion. The only significant difference is a rotation about the C(Ph),COO bond, with O,C,C,C torsion angles having values of 6.3,(7) and 157.3,(3)° in the two isomeric forms. [source]


Reversible Full-Range Color Control of a Cholesteric Liquid-Crystalline Film by using a Molecular Motor

CHEMISTRY - AN ASIAN JOURNAL, Issue 3 2006
Rienk Eelkema Dr.
Abstract By using a chiral molecular motor as a dopant in a cholesteric liquid-crystalline film, fully reversible control of the reflection color of this film across the entire visible spectrum is possible. The large difference in helical twisting power between the two isomeric forms of the motor allows efficient light- and heat-induced switching of the helicity of the cholesteric liquid-crystal superstructure. [source]