Home About us Contact | |||
Isolation-by-distance Model (isolation-by-distance + model)
Selected AbstractsVariation in gene content among geographically diverse Sulfolobus isolatesENVIRONMENTAL MICROBIOLOGY, Issue 1 2008Dennis W. Grogan Summary The ability of competitive (i.e., comparative) genomic hybridization (CGH) to assess similarity across entire microbial genomes suggests that it should reveal diversification within and between natural populations of free-living prokaryotes. We used CGH to measure relatedness of genomes drawn from Sulfolobus populations that had been shown in a previous study to be diversified along geographical lines. Eight isolates representing a wide range of spatial separation were compared with respect to gene-specific tags based on a closely related reference strain (Sulfolobus solfataricus P2). For the purpose of assessing genetic divergence, 232 loci identified as polymorphic were assigned one of two alleles based on the corresponding fluorescence intensities from the arrays. Clustering of these binary genotypes was stable with respect to changes in the threshold and similarity criteria, and most of the groupings were consistent with an isolation-by-distance model of diversification. These results indicate that increasing spatial separation of geothermal sites correlates not only with minor sequence polymorphisms in conserved genes of Sulfolobus (demonstrated in the previous study), but also with the regions of difference (RDs) that occur between genomes of conspecifics. In view of the abundance of RDs in prokaryotic genomes and the relevance that some RDs may have for ecological adaptation, the results further suggest that CGH on microarrays may have advantages for investigating patterns of diversification in other free-living archaea and bacteria. [source] Effects of environmental pollution on microsatellite DNA diversity in wood mouse (Apodemus sylvaticus) populationsENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 11 2005Veerle Berckmoes Abstract Ten microsatellite DNA loci were surveyed to investigate the effects of heavy metal pollution on the genetic diversity and population genetic structure of seven wood mouse (Apodemus sylvaticus) populations along a heavy metal pollution gradient away from a nonferrous smelter in the south of Antwerp (Flanders, Belgium). Analysis of soil heavy metal concentrations showed that soil Ag, As, Cd, Cu, and Pb decreased with increasing distance from the smelter. Genetic analyses revealed high levels of genetic variation in all populations, but populations from the most polluted sites in the gradient did not differ from those of less-polluted sites in terms of mean observed and expected heterozygosity level and mean allelic richness. No correlation was found between measures of genetic diversity and the degree of heavy metal pollution. However, an analysis of molecular variance and a neighbor-joining tree suggested a contamination-related pattern of genetic structuring between the most polluted and less polluted sites. Pairwise FST values indicated that populations were significantly genetically differentiated, and assignment tests and direct estimates of recent migration rates suggested restricted gene flow among populations. Additionally, genetic differentiation increased significantly with geographical distance, which is consistent with an isolation-by-distance model. We conclude that, at least for our microsatellite DNA markers, genetic diversity in the studied wood mouse populations is not affected greatly by the heavy metal pollution. [source] The species delimitation problem in the Simulium damnosum complex, blackfly vectors of onchocerciasisMEDICAL AND VETERINARY ENTOMOLOGY, Issue 3 2009R. MORALES-HOJAS Abstract. The Simulium damnosum Theobald complex (Diptera: Simuliidae) comprises 57 cytoforms grouped into six subcomplexes. Previous phylogenetic studies using gene sequences have not completely resolved the evolutionary relationships of the cytoforms. The present study investigated the systematics of the complex using a phylogeographic approach. The differentiation between eastern and western forms observed in the phylogenetic studies is confirmed in the estimated haplotype networks. However, haplotypes tend to group in geographical clades and not according to cytoforms. Spatial analyses of the molecular variance also resulted in optimal groupings of sequences that did not correspond to cytoform boundaries. Moreover, Mantel tests showed significant correlations, although not strong, between genetic and geographical distances. This suggests an isolation-by-distance model of differentiation. Furthermore, there are instances in which genetic differentiation between cytoforms is low and not significant. These results indicate a lack of clear genetic differentiation between the cytoforms, which may be explained either by a separation of the taxa recent enough to allow the accumulation of few genetic differences or by recombination between the genomes of the cytoforms, which may be the result of hybridization with introgression or of non-independent evolutionary lineages. The results also emphasize the need for further sampling and for the use of more variable markers in order to clarify the evolutionary history of the group. [source] Long-term effects of translocation and release numbers on fine-scale population structure among coho salmon (Oncorhynchus kisutch)MOLECULAR ECOLOGY, Issue 12 2007WILLIAM H. ELDRIDGE Abstract Management actions, such as translocations, reintroductions and supportive breeding, can have both negative and positive effects on population recovery. Several studies have examined the incidence of introgression following such actions, but few studies have explored the effect of release numbers on gene flow between closely related recipient populations. We examined population structure of coho salmon in Puget Sound (Washington State, USA) to evaluate the relationship between the number of individuals transferred between rivers, and the number released within rivers, on inter- and intrariver population divergence. Eleven microsatellite loci were surveyed in 23 hatchery and wild samples collected from 11 rivers within and one hatchery outside Puget Sound. Pairwise genetic divergences between most populations were significant, but the population structure could not be explained by an isolation-by-distance model (Mantel test, P > 0.05). In contrast, we detected significant hatchery influence on population structure. The numbers of fish transferred among rivers between 1952 and 2004 was negatively correlated with differentiation between rivers (partial Mantel test, P = 0.005) but not within rivers (t -test, P = 0.41). Number of fish released from hatcheries that collect broodstock locally was negatively correlated with population structure within rivers (t -test P = 0.002), and between nearby rivers (partial Mantel P = 0.04). Our results indicate that the population structure can, to some degree, be altered by the number of individuals transferred and by local release number of individuals in ongoing artificial propagation programs. The findings presented here emphasize the need to control the number of individuals that are either inadvertently introduced, or are deliberately released under conservation scenarios. [source] Population genetic structure of mahogany (Swietenia macrophylla King, Meliaceae) across the Brazilian Amazon, based on variation at microsatellite loci: implications for conservationMOLECULAR ECOLOGY, Issue 11 2003Maristerra R. Lemes Abstract Mahogany (Swietenia macrophylla, Meliaceae) is the most valuable and intensively exploited Neotropical tree. No information is available regarding the genetic structure of mahogany in South America, yet the region harbours most of the unlogged populations of this prized hardwood. Here we report on the genetic diversity within and the differentiation among seven natural populations separated by up to 2100 km along the southern arc of the Brazilian Amazon basin. We analysed the variation at eight microsatellite loci for 194 adult individuals. All loci were highly variable, with the number of alleles per locus ranging from 13 to 27 (mean = 18.4). High levels of genetic diversity were found for all populations at the eight loci (mean HE = 0.781, range 0.754,0.812). We found moderate but statistically significant genetic differentiation among populations considering both estimators of FST and RST, , = 0.097 and , = 0.147, respectively. Estimates of , and , were significantly greater than zero for all pairwise population comparisons. Pairwise ,-values were positively and significantly correlated with geographical distance under the isolation-by-distance model. Furthermore, four of the populations exhibited a significant inbreeding coefficient. The finding of local differentiation among Amazonian mahogany populations underscores the need for in situ conservation of multiple populations of S. macrophylla across its distribution in the Brazilian Amazon. In addition, the occurrence of microgeographical genetic differentiation at a local scale indicates the importance of maintaining populations in their diverse habitats, especially in areas with mosaics of topography and soil. [source] The mean measure of divergence: Its utility in model-free and model-bound analyses relative to the Mahalanobis D2 distance for nonmetric traitsAMERICAN JOURNAL OF HUMAN BIOLOGY, Issue 3 2010Joel D. Irish The mean measure of divergence (MMD) distance statistic has been used by researchers for nearly 50 years to assess inter-sample phenetic affinity. Its widespread and often successful use is well documented, especially in the study of cranial and dental nonmetric traits. However, the statistic has accumulated some undesired mathematical baggage through the years from various workers in their attempts to improve or alter its performance. Others may not fully understand how to apply the MMD or interpret its output, whereas some described a number of perceived shortcomings. As a result, the statistic and its sometimes flawed application(s) have taken several well-aimed hits; a few researchers even argued that it should no longer be utilized or, at least, that its use be reevaluated. The objective of this report is to support the MMD, and in the process: (1) provide a brief history of the statistic, (2) review its attributes and applicability relative to the often-used Mahalanobis D2 statistic for nonmetric traits, (3) compare results from MMD and D2 model-free analyses of previously-recorded sub-Saharan African dental samples, and (4) investigate its utility for model-bound analyses. In the latter instance, the ability of the D2 and other squared Euclidean-based statistics to approximate a genetic relationship matrix and Sewall Wright's fixation index using phenotypic data, and the inability of the MMD to do so, is addressed. Three methods for obtaining such results with nonlinear MMD distances, as well as an assessment of the fit of the isolation-by-distance model, are presented. Am. J. Hum. Biol., 2010. © 2009 Wiley-Liss, Inc. [source] Population structure and paternal admixture landscape on present-day Mexican-Mestizos revealed by Y-STR haplotypesAMERICAN JOURNAL OF HUMAN BIOLOGY, Issue 3 2010J. Salazar-Flores Mestizos currently represent most of the Mexican population (>90%); they are defined as individuals born in the country having a Spanish-derived last name, with family antecedents of Mexican ancestors back at least to the third generation. Mestizos are result of 500 years of admixture mainly among Spaniards, Amerindians, and African slaves. Consequently, a complex genetic pattern has been generated throughout the country that has been scarcely studied from the paternal point of view. This fact is important, taking into account that gene flow toward the New World comprised largely males. We analyzed the population structure and paternal admixture of present-day Mexican-Mestizo populations based on Y-STRs. We genotyped at least 12 Y-STRs in DNA samples of 986 males from five states: Aguascalientes (n = 293); Jalisco (n = 185); Guanajuato (n = 168); Chiapas (n = 170); and Yucatán (n = 170). AmpF,STR Y-filer and Powerplex-Y® kits were used. Inclusion of North and Central Y-STR databases in the analyses allowed obtaining a Y-STR variability landscape from Mexico. Results confirmed the population differentiation gradient previously noted in Mestizos with SNPs and autosomal STRs throughout the Mexican territory: European ancestry increments to the Northwest and, correspondingly, Amerindian ancestry increments to the Center and Southeast. In addition, SAMOVA test and Autocorrelation Index for DNA Analysis autocorrelogram plot suggested preferential gene flow of males with neighboring populations in agreement with the isolation-by-distance model. Results are important for disease-risk studies (principally male-related) and for human identification purposes, because Y-STR databases are not available on the majority of Mexican-Mestizo populations. Am. J. Hum. Biol., 2010. © 2009 Wiley-Liss, Inc. [source] Population structure, genetic variation and morphological diversity in indigenous sheep of EthiopiaANIMAL GENETICS, Issue 6 2007S. Gizaw Summary We investigated genetic and morphological diversity and population structure of 14 traditional sheep populations originating from four ecological zones in Ethiopia (sub-alpine, wet highland, sub-humid lowland and arid lowland). All animals (n = 672) were genotyped for 17 microsatellite markers and scored for 12 morphological characters. The sheep were initially classified as fat-tailed (11 populations), thin-tailed (one population) and fat-rumped sheep (two populations). These classifications are thought to correspond to three consecutive introduction events of sheep from the Near-East into East Africa. For the 14 populations, allelic richness ranged from 5.87 to 7.51 and expected heterozygosity (HE) from 0.66 to 0.75. Genetic differentiations (FST values) between all pairs of populations, except between sub-alpine populations, were significantly different from zero (P < 0.001). Cluster analysis of morphological characters and a dendrogram constructed from genetic distances were broadly consistent with the classification into fat-tailed, thin-tailed and fat-rumped sheep. Bayesian cluster analysis using microsatellite markers indicated that there has been further genetic differentiation after the initial introduction of sheep into Ethiopia. Investigation of factors associated with genetic variation showed that an isolation-by-distance model, independently of other factors, explained most of the observed genetic variation. We also obtained a strong indication of adaptive divergence in morphological characters, patterns of morphological variation being highly associated with ecology even when the effect of neutral genetic divergence (FST) was parcelled out in partial Mantel tests. Using a combination of FST values, Bayesian clustering analysis and morphological divergence, we propose a classification of Ethiopian sheep into six breed groups and nine breeds. [source] Social Network Analysis of the Genetic Structure of Pacific IslandersANNALS OF HUMAN GENETICS, Issue 3 2010John Edward Terrell Summary Social network analysis (SNA) is a body of theory and a set of relatively new computer-aided techniques used in the analysis and study of relational data. Recent studies of autosomal markers from over 40 human populations in the south-western Pacific have further documented the remarkable degree of genetic diversity in this part of the world. I report additional analysis using SNA methods contributing new controlled observations on the structuring of genetic diversity among these islanders. These SNA mappings are then compared with model-based network expectations derived from the geographic distances among the same populations. Previous studies found that genetic divergence among island Melanesian populations is organised by island, island size/topography, and position (coastal vs. inland), and that similarities observed correlate only weakly with an isolation-by-distance model. Using SNA methods, however, improves the resolution of among population comparison, and suggests that isolation by distance constrained by social networks together with position (coastal/inland) accounts for much of the population structuring observed. The multilocus data now available is also in accord with current thinking on the impact of major biogeographical transformations on prehistoric colonisation and post-settlement human interaction in Oceania. [source] |