Home About us Contact | |||
Isolation Distance (isolation + distance)
Selected AbstractsImproving the design and management of forest strips in human-dominated tropical landscapes: a field test on Amazonian dung beetlesJOURNAL OF APPLIED ECOLOGY, Issue 4 2010Jos Barlow Summary 1.,The future of tropical forest species depends in part on their ability to survive in human-modified landscapes. Forest strips present a priority area for biodiversity research because they are a common feature of many managed landscapes, are often afforded a high level of legal protection, and can provide a cost-effective and politically acceptable conservation strategy. 2.,Despite the potential conservation benefits that could be provided by forest strips, ecologists currently lack sufficient evidence to inform policy and guide their design and management. 3.,We used a quasi-experimental landscape in the Brazilian Amazon to test the importance of four management-relevant variables (forest type, isolation distance, forest structure, and large mammal activity) on the potential biodiversity conservation value of narrow forest strips for dung beetles. 4.,Information-theoretic model selection based on AICc revealed strong support for the influence of large mammal activity and forest type on dung beetle abundance; isolation distance on species richness; and forest structure on the relative abundance of matrix-tolerant species. Multi-dimensional scaling showed a strong influence of forest type and isolation on community composition and structure, with riparian and dry-land strips having complementary sets of species. 5.,Synthesis and applications. To enhance the conservation value and ecological integrity of forest strips in human-modified landscapes we recommend that strip design considers both isolation distance and whether or not the strips encompass perennial streams. In addition, we identify the maintenance of forest structure and the protection of large mammal populations as being crucially important for conserving forest dung beetle communities. [source] Dung Beetle Assemblages and Seasonality in Primary Forest and Forest Fragments on Agricultural Landscapes in Budongo, UgandaBIOTROPICA, Issue 4 2009Philip Nyeko ABSTRACT Very little is known about the diversity of arthropods in the fast-disappearing fragments of natural forests in sub-Saharan Africa. This study investigated: (1) the influence of forest fragment characteristics on dung beetle species richness, composition, abundance, and diversity; and (2) the relationship between dung beetle assemblages and rainfall pattern. Beetles were sampled through 12 mo using dung baited pitfall traps. A total of 18,073 dung beetles belonging to three subfamilies and 45 species were captured. The subfamily Scarabaeinae was the most abundant (99%) and species rich (89%). Fast-burying tunnellers (paracoprids) were the most dominant functional group. Catharsius sesostris, Copris nepos, and Heliocopris punctiventris were the three most abundant species, and had the highest contributions to dissimilarities between forests. With few exceptions, dung beetle abundance, species richness, and diversity were generally higher in larger forest fragments (100,150 ha) than in smaller ones (10,50 ha) and the nature reserve (1042 ha). Forest fragment size had a highly significant positive relationship with beetle abundance, but only when the nature reserve is excluded in the analysis. Dung beetle abundance and species richness showed direct weak relationships with litter depth (positive) and groundcover (negative) but not tree density, tree species richness, and fragment isolation distance. Dung beetle abundance and species richness were strongly correlated with monthly changes in rainfall. Results of this study indicate that forest fragments on agricultural lands in the Budongo landscape, especially medium-sized (100,150 ha) ones, represent important conservation areas for dung beetles. [source] A multi-scale test for dispersal filters in an island plant communityECOGRAPHY, Issue 4 2005Kevin C. Burns Constraints on plant distributions resulting from seed limitation (i.e. dispersal filters) were evaluated on two scales of ecological organization on islands off the coast of British Columbia, Canada. First, island plant communities were separated into groups based on fruit morphology, and patterns in species diversity were compared between fruit-type groups. Second, abundance patterns in several common fleshy-fruited, woody angiosperm species were compared to species-specific patterns in seed dispersal by birds. Results from community-level analyses showed evidence for dispersal filters. Dry-fruited species were rare on islands, despite being common on the mainland. Island plant communities were instead dominated by fleshy-fruited species. Patterns in seed dispersal were consistent with differences in diversity, as birds dispersed thousands of fleshy-fruited seeds out to islands, while dry fruited species showed no evidence of mainland-island dispersal. Results from population-level analyses showed no evidence for dispersal filters. Population sizes of common fleshy-fruited species were unrelated to island isolation, as were rates of seed dispersal. Therefore, island isolation distances were not large enough to impose constraints on species' distributions resulting from seed limitation. Rates of seed dispersal were also unrelated to island area. However, several species increased in abundance with island area, indicating post-dispersal processes also help to shape species distributions. Overall results suggest that seed dispersal processes play an important role in determining the diversity and distribution of plants on islands. At the community-level, dry-fruited species were seed limited and island communities were instead dominated by fleshy-fruited species. At the population-level, common fleshy-fruited species were not seed limited and showed few differences in distribution among islands. Therefore, although evidence for dispersal filters was observed, their effects on plant distributions were scale-dependent. [source] Genetic structure and gene flow in wild beet populations: the potential influence of habitat on transgene spread and risk assessmentJOURNAL OF APPLIED ECOLOGY, Issue 6 2006A. N. CURETON Summary 1The consequences of the movement of transgenes from genetically modified (GM) crops into wild populations of plants continues to be of concern to ecologists and conservationists because of the possible threat posed to those populations in terms of their continued survival and because of the further knock-on effects that might occur to habitats in which they occur. 2We examined five UK sea beet Beta vulgaris ssp. maritima populations from each of two major habitat types, cliff top and drift line. We assessed population genetic parameters, genetic diversity, gene flow, population differentiation and isolation by distance, to enable determination of the likelihood and consequences of spread to wild populations of genes from cultivated sugar beet group Beta vulgaris ssp. vulgaris, which could in the future be transgenic. 3Drift line populations were more diverse than cliff top populations and also showed greater levels of gene flow. 4Isolation by distance was identified in both habitats, but the relationship between genetic and geographical distance was detectable over longer distances for drift line populations. However, clear indications of vicariance (the subdivision of a population into distinct taxa by the appearance of a geological barrier) between cliff and drift line populations were also evident, because of the restriction of gene flow between the two habitats occurring more in one direction than the other. 5Synthesis and applications. The likelihood of transgene spread from crop to wild populations is habitat dependent and conservation management decisions could therefore vary from one population to another, for example water courses were found to facilitate seed dispersal. This should be taken into account when estimating isolation distances for GM beet, and when predicting transgene frequencies (exposure estimates) for environmental risk assessments of GM beet. [source] |