Home About us Contact | |||
Isolated Subunits (isolated + subunit)
Selected AbstractsLimited proteolysis analysis of the ribosome is affected by subunit associationBIOPOLYMERS, Issue 6 2009Daisy-Malloy Hamburg Abstract Our understanding of the structural organization of ribosome assembly intermediates, in particular those intermediates that result from misfolding leading to their eventual degradation within the cell, is limited because of the lack of methods available to characterize assembly intermediate structures. Because conventional structural approaches, such as NMR, X-ray crystallography, and cryo-EM, are not ideally suited to characterize the structural organization of these flexible and sometimes heterogeneous assembly intermediates, we have set out to develop an approach combining limited proteolysis with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) that might be applicable to ribonucleoprotein complexes as large as the ribosome. This study focuses on the limited proteolysis behavior of appropriately assembled ribosome subunits. Isolated subunits were analyzed using limited proteolysis and MALDI-MS and the results were compared with previous data obtained from 70S ribosomes. Generally, ribosomal proteins were found to be more stable in 70S ribosomes than in their isolated subunits, consistent with a reduction in conformational flexibility on subunit assembly. This approach demonstrates that limited proteolysis combined with MALDI-MS can reveal structural changes to ribosomes on subunit assembly or disassembly, and provides the appropriate benchmark data from 30S, 50S, and 70S proteins to enable studies of ribosome assembly intermediates. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 410,422, 2009. This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com [source] Complete reconstitution of an ATP-binding cassette transporter LolCDE complex from separately isolated subunitsFEBS JOURNAL, Issue 12 2007Kyoko Kanamaru The LolCDE complex of Escherichia coli belongs to the ATP-binding cassette transporter superfamily and mediates the detachment of lipoproteins from the inner membrane, thereby initiating lipoprotein sorting to the outer membrane. The complex is composed of one copy each of membrane subunits LolC and LolE, and two copies of ATPase subunit LolD. To establish the conditions for reconstituting the LolCDE complex from separately isolated subunits, the ATPase activities of LolD and LolCDE were examined under various conditions. We found that both LolD and LolCDE were inactivated on incubation at 30 °C in a detergent solution. ATP and phospholipids protected LolCDE, but not LolD. Furthermore, phospholipids reactivated LolCDE even after its near complete inactivation. LolD was also protected from inactivation when membrane subunits and phospholipids were present together, suggesting the phospholipid-dependent reassembly of LolCDE subunits. Indeed, the functional lipoprotein-releasing machinery was reconstituted into proteoliposomes with E. coli phospholipids and separately purified LolC, LolD and LolE. Preincubation with phospholipids at 30 °C was essential for the reconstitution of the functional machinery from subunits. Strikingly, the lipoprotein-releasing activity was also reconstituted from LolE and LolD without LolC, suggesting the intriguing possibility that the minimum lipoprotein-releasing machinery can be formed from LolD and LolE. We report here the complete reconstitution of a functional ATP-binding cassette transporter from separately purified subunits. [source] Limited proteolysis analysis of the ribosome is affected by subunit associationBIOPOLYMERS, Issue 6 2009Daisy-Malloy Hamburg Abstract Our understanding of the structural organization of ribosome assembly intermediates, in particular those intermediates that result from misfolding leading to their eventual degradation within the cell, is limited because of the lack of methods available to characterize assembly intermediate structures. Because conventional structural approaches, such as NMR, X-ray crystallography, and cryo-EM, are not ideally suited to characterize the structural organization of these flexible and sometimes heterogeneous assembly intermediates, we have set out to develop an approach combining limited proteolysis with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) that might be applicable to ribonucleoprotein complexes as large as the ribosome. This study focuses on the limited proteolysis behavior of appropriately assembled ribosome subunits. Isolated subunits were analyzed using limited proteolysis and MALDI-MS and the results were compared with previous data obtained from 70S ribosomes. Generally, ribosomal proteins were found to be more stable in 70S ribosomes than in their isolated subunits, consistent with a reduction in conformational flexibility on subunit assembly. This approach demonstrates that limited proteolysis combined with MALDI-MS can reveal structural changes to ribosomes on subunit assembly or disassembly, and provides the appropriate benchmark data from 30S, 50S, and 70S proteins to enable studies of ribosome assembly intermediates. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 410,422, 2009. This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com [source] Low frequency resonance Raman spectra of isolated , and , subunits of hemoglobin and their deuterated analoguesBIOPOLYMERS, Issue 5 2006Edyta Podstawka Abstract In an attempt to gain further insight into the nature of the low frequency vibrational modes of hemoglobin and its isolated subunits, a comprehensive study of several different isotopically labeled analogues has been undertaken and is reported herein. Specifically, the resonance Raman spectra, between 200 and 500 cm,1, are reported for the deoxy and ligated (CO and O2) forms of the isolated , and , subunits containing the natural abundance or various deuterated analogues of protoheme. The deuterated protoheme analogues studied include the 1,3,5,8-C2H3 -protoheme (d12- protoheme), the 1,3-C2H3 -protoheme (1,3- d6-protoheme), the 5,8-C2H3 -protoheme (5,8- d6-protoheme), and the meso-C2H4 -protoheme (d4-protoheme). The entire set of acquired spectra has been analyzed using a deconvolution procedure to help correlate the shifted modes with their counterparts in the spectra of the native forms. Interestingly, modes previously associated with so-called vinyl bending modes or propionate deformation modes are shown to be quite sensitive to deuteration of the peripheral methyl groups of the macrocycle, shifting by up to 12,15 cm,1, revealing their complex nature. Of special interest is the fact that shifts observed for the 1,3- d6- and 5,8- d6-protoheme analogues confirm the fact that certain modes are associated with a given portion of the macrocycle; i.e., only certain modes shift upon deuteration of the 1 and 3 methyl groups, while others shift upon deuteration of the 5 and 8 methyl groups. Compared with the spectra previously reported for the corresponding myoglobin derivatives, the data reported here reveal the appearance of several additional features that imply splitting of modes associated with the propionate groups or that are indicative of greater distortion of the heme prosthetic groups. © 2006 Wiley Periodicals, Inc. Biopolymers 83: 455,466, 2006 This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com [source] |