Home About us Contact | |||
Islet Function (islet + function)
Selected AbstractsPretransplant HLA Antibodies Are Associated with Reduced Graft Survival After Clinical Islet TransplantationAMERICAN JOURNAL OF TRANSPLANTATION, Issue 5 2007P. M. Campbell Despite significant improvements in islet transplantation, long-term graft function is still not optimal. It is likely that both immune and nonimmune factors are involved in the deterioration of islet function over time. Historically, the pretransplant T-cell crossmatch and antibody screening were done by anti-human globulin,complement-dependent cytotoxicity (AHG-CDC). Class II antibodies were not evaluated. In 2003, we introduced solid-phase antibody screening using flow-based beads and flow crossmatching. We were interested to know whether pretransplant human leukocyte antigen (HLA) antibodies or a positive flow crossmatch impacted islet function post-transplant. A total of 152 islet transplants was performed in 81 patients. Islet function was determined by a positive C-peptide. Results were analyzed by procedure. Class I and class II panel reactive antibody (PRA) > 15% and donor-specific antibodies (DSA) were associated with a reduced C-peptide survival (p < 0.0001 and p < 0.0001, respectively). A positive T- and or B-cell crossmatch alone was not. Pretransplant HLA antibodies detectable by flow beads are associated with reduced graft survival. This suggests that the sirolimus and low-dose tacrolimus-based immunosuppression may not control the alloimmune response in this presensitized population and individuals with a PRA > 15% may require more aggressive inductive and maintenance immunosuppression, or represent a group that may not benefit from islet transplantation. [source] Zinc, a regulator of islet function and glucose homeostasisDIABETES OBESITY & METABOLISM, Issue 2009N. Wijesekara It is well known that zinc is required in pancreatic ,-cells in the process of insulin biosynthesis and the maturation of insulin secretory granules. In fact, the zinc level in pancreatic islets is amongst the highest in the body and reduction in its levels in the pancreas has been associated with diabetes. High concentrations of zinc can also be toxic because of enhanced oxidative damage. The link between zinc, diabetes and islet dysfunction has recently been reiterated by genomewide association studies that identified an islet cell membrane zinc transporter, SLC30A8 (ZnT8), as one of the risk loci for type 2 diabetes. Here we explore the importance of both zinc and ZnT8 to islet biology and whole body glucose homeostasis. [source] The role of pdx1 and HNF6 in proliferation and differentiation of endocrine precursorsDIABETES/METABOLISM: RESEARCH AND REVIEWS, Issue 2 2004Laura Wilding Abstract Ex vivo expansion of embryonic stem cells (ES cells) or pancreatic stem cells for insulin delivery to diabetic patients provides potential for the restoration of islet function in these individuals. Understanding the spatial and temporal requirements of crucial factors for endocrine progenitor specification, proliferation, and terminal differentiation remains a major challenge in the field of pancreas development. Here, we provide speculation as to the role of pdx1 and HNF6 in these different stages of pancreatic endocrine cell development. At the time when islets begin to form within the pancreas, the expression patterns of pdx1 and HNF6 diverge, suggesting distinct functions for each of the genes over the course of endocrine cell development. The current body of evidence provides support for a role of both factors in early endocrine specification as well as a requirement for pdx1 in the generation of mature pancreatic endocrine cells. The precise temporal requirement of HNF6 in the production of terminally differentiated endocrine cells remains unclear. Future studies in this area will rely on conditionally manipulatable systems in combination with lineage-tracing studies for a more accurate assessment of pdx1 and HNF6 function at different stages along the pathway of endocrine cell development. Copyright © 2004 John Wiley & Sons, Ltd. [source] The metabolic effects of once daily extended-release metformin in patients with type 2 diabetes: a multicentre studyINTERNATIONAL JOURNAL OF CLINICAL PRACTICE, Issue 5 2008H. Gao Summary Aim:, To investigate the effects of extended-release metformin (MXR) compared with immediate-release metformin (MIR) on post-prandial glycaemic excursion, chronic glycaemia, lipid profiles, insulin resistance and islet function in type 2 diabetes. Methods:, A randomised, open-labelled, positive-controlled multicentre study was conducted on 150 Chinese patients with type 2 diabetes. After 2 weeks of run-in period with MIR, 150 subjects were randomised into MXR group and MIR group. The patients in MXR group were assigned to take MXR 1500 mg once daily after dinner, while the patients in MIR group were assigned to continue MIR 500 mg thrice daily after meals for 12 weeks. Standard meal tests were carried out at baseline and at the end of this study. Plasma glucose, serum insulin, HbA1c and lipid profiles were measured. Homeostasis model assessment (HOMA) was used to evaluate insulin resistance index (HOMA-IR) and islet ,-cell function index (HOMA-B). Results:, Either MIR or MXR modestly, but significantly decreased HbA1c levels and body mass index (BMI) after 12 weeks of treatment. However, there were no significant differences between two groups. The post-prandial glycaemia at 120 min after a standard meal in MXR group was higher than in MIR group (11.02 ± 3.08 mmol/l vs. 9.74 ± 2.61 mmol/l, p < 0.05). Moreover, no differences in the areas under curve of insulin release response, HOMA-B, HOMA-IR and lipid profiles were found within or between groups after 12 weeks of treatment. Conclusion:, The effects of once daily MXR on chronic glycaemia, BMI, lipid profiles, insulin resistance and islet function are comparable with that of thrice daily MIR in oriental population. [source] Cellular origins of ,-cell regeneration: a legacy view of historical controversiesJOURNAL OF INTERNAL MEDICINE, Issue 4 2009A. Granger Abstract. Beta-cell regeneration represents a major goal of therapy for diabetes. Unravelling the origin of , cells during pancreatic regeneration could help restore a functional ,-cell mass in diabetes patients. This scientific question has represented a longstanding interest still intensively investigated today. This review focuses on pioneering observations and subsequent theories made 100 years ago and describes how technical innovation helped resolve some, but not all, of the controversies generated by these early investigators. At the end of the 19th century, complete pancreatectomy demonstrated the crucial physiological role of the pancreas and its link with diabetes. Pancreatic injury models, including pancreatectomy and ductal ligation, allowed investigators to describe islet function and to assess the regenerative capacity of the pancreas. Three main theories were proposed to explain the origins of newly formed islets: (i) transdifferentiation of acinar cells into islets, (ii) islet neogenesis, a process reminiscent of islet formation during embryonic development, and (iii) replication of preexisting islet cells. Despite considerable technical innovation in the last 50 years, the origin of new adult , cells remains highly controversial and the same three theories are still debated today. [source] Melatonin protects against streptozotocin, but not interleukin-1,-induced damage of rodent pancreatic ,-cellsJOURNAL OF PINEAL RESEARCH, Issue 3 2001Annika K. Andersson In the present study, we examined whether melatonin can protect rodent pancreatic islets against streptozotocin (STZ) and interleukin-1, (IL-1,)-induced suppression of ,-cell function. Formation of free radicals, DNA damage and extensive DNA repair leading to depletion of intracellular nicotinamide adenine dinucleotide (NAD) may mediate STZ toxicity. Activation of inducible nitric oxide synthase and nitric oxide (NO) formation may cause IL-1,-induced ,-cell impairment. We also studied the effect of melatonin against STZ-induced hyperglycemia in C57BL/Ks mice. For in vitro studies, cultured rat islets were exposed to melatonin (100 ,M,1 mM) 30 min prior to STZ (0.5 mM) or IL-1, (25 U/mL) addition. After an additional 30 min incubation with STZ, islet function and NAD content were analyzed either acutely or after 18 hr of recovery in fresh culture medium. For IL-1, experiments, islets were incubated for 48 hr with the cytokine before evaluation of islet function. We found that melatonin counteracted STZ-induced inhibition of glucose metabolism and insulin release in cultured rat islets after 18 hr of recovery. Moreover, NAD levels were higher in the melatonin-treated group at this time point. Melatonin had no effect on IL-1,-induced islet inhibition of glucose oxidation or NO formation. Diabetes induced by STZ (140 mg/kg body weight; i.v.) was effectively prevented by administration of melatonin (100 mg/kg body weight; i.p.) 30 min before STZ injection. We conclude that the protective effects of melatonin against ,-cell damage may be related to interference with DNA damage and poly(ADP-ribose) polymerase (PARP) activation rather than through effects on NO generation pathways. [source] Magnetic resonance imaging and biological properties of pancreatic islets labeled with iron oxide nanoparticlesNMR IN BIOMEDICINE, Issue 8 2009Hoe Suk Kim Abstract This study was undertaken to investigate the in vitro effect of islet labeling with iron oxide nanoparticles for MRI on islet viability, insulin secretion, and gene expression. Isolated rat islets were labeled with Resovist (25,200,µg Fe/mL, a clinically approved MRI contrast agent) in the presence or absence of poly- l -Lysine (PLL, 1.5,µg/mL) for 48,h. The iron content of labeled islets was found to increase in a dose-dependent manner. More than 90% of the islets were labeled with 100,µg Fe/mL. We confirmed the localizations of iron oxide nanoparticles within islet , -cells by insulin immunostaining. As the concentration of Resovist increased, T2 values as determined by T2 -weighted MRI on a 1.5,Tesla MR scanner decreased. Labeling of 100 islets in a medium containing 100,µg Fe/mL of Resovist in the absence of PLL provided sufficient contrast for islet visualization on T2 -weighted MRI. MTT assays showed that the viability of labeled islets was not different from that of unlabeled islets. No statistical difference was observed between labeled (2.91,±,0.36) and unlabeled islets (2.83,±,0.61) in terms of the ability to secrete insulin, as determined by the glucose stimulation index. We also evaluated the effect of iron oxide incorporation on the gene expressions in islet cells using RT-PCR (reverse transcriptase PCR). Insulin expression in labeled islets was significantly elevated (1.83,±,0.25 fold vs. unlabeled; p,=,0.005), but not the expression of somatostatin (1.39,±,0.18 fold vs. unlabeled; p,=,0.085) or glucagons (1.28,±,0.13 fold vs. unlabeled; p,=,0.09). Expression of an important transcription factor for insulin gene transcription, BETA2 (beta-cell E-box trans-activator), was increased in labeled islets (1.67,±,0.15 fold vs. unlabeled; p,=,0.029). The findings of this study indicate that Resovist provides a satisfactory means to image islets and has no deleterious effect on islet function or gene expression. Copyright © 2009 John Wiley & Sons, Ltd. [source] Evidence for Humoral Rejection of a Pancreatic Islet Graft and Rescue with Rituximab and IV Immunoglobulin TherapyAMERICAN JOURNAL OF TRANSPLANTATION, Issue 8 2009L. Kessler We describe the decline in islet function, in relation to HLA sensitization, in an islet transplant recipient and the recovery of this function after treatment with anti-CD20 monoclonal antibody and IV immunoglobulins. A 51-year-old woman with type 1 diabetes received one intraportal islet infusion. Following this transplantation, she became insulin independent. A search for HLA antibodies by using an ELISA technique remained consistently negative for HLA class I and II. It was only 2 years after the islet transplantation that this search became positive against class II antigens, reaching a peak of reactivity concomitantly with the appearance of a deterioration of glucose control requiring low-dose insulin therapy. Luminex® screening and single-antigen assays then revealed the presence of both nondonor-specific and donor-specific antibodies against HLA class II molecules. This immunization, already present in the pretransplant serum, had increased during the 6 months preceding the clinical deterioration. Since these data nevertheless pointed to antibody-mediated rejection of the islet allograft, treatment with anti-CD20 monoclonal antibody and IV immunoglobulins was initiated. One month later, the search by ELISA for antibodies against HLA class II antigens became negative, the Luminex® tests normalizing more gradually. As the result of an improvement in glucose control, the patient was again insulin-free. [source] Allograft-Specific Cytokine Profiles Associate with Clinical Outcome After Islet Cell TransplantationAMERICAN JOURNAL OF TRANSPLANTATION, Issue 2 2009V. A. L. Huurman Islet cell transplantation can cure type 1 diabetes, but allograft rejection and recurrent autoimmunity may contribute to decreasing insulin independence over time. In this study we report the association of allograft-specific proliferative and cytokine profiles with clinical outcome. Peripheral blood mononuclear cells were obtained of 20 islet recipients. Cytokine values in mixed lymphocyte cultures (MLC) were determined using stimulator cells with graft-specific HLA class II. Qualitative and quantitative cytokine profiles were determined before and after islet transplantation, blinded from clinical outcome. Cytotoxic T Lymphocyte precursor (CTLp) assays were performed to determine HLA class I alloreactivity. Allograft-specific cytokine profiles were skewed toward a Th2 or regulatory (Treg) phenotype after transplantation in insulin-independent, but not in insulin-requiring recipients. IFN,/IL10 ratio and MLC proliferation decreased after transplantation in insulin-independent recipients (p = 0.006 and p = 0.01, respectively). Production of the Treg cytokine IL10 inversely correlated with proliferation in alloreactive MLC (p = 0.008) and CTLp (p = 0.005). Production of IL10 combined with low-MLC reactivity associated significantly with insulin independence. The significant correlation between allograft-specific cytokine profiles and clinical outcome may reflect the induction of immune regulation in successfully transplanted recipients. Islet donor-specific IL10 production correlates with low alloreactivity and superior islet function. [source] Pretransplant HLA Antibodies Are Associated with Reduced Graft Survival After Clinical Islet TransplantationAMERICAN JOURNAL OF TRANSPLANTATION, Issue 5 2007P. M. Campbell Despite significant improvements in islet transplantation, long-term graft function is still not optimal. It is likely that both immune and nonimmune factors are involved in the deterioration of islet function over time. Historically, the pretransplant T-cell crossmatch and antibody screening were done by anti-human globulin,complement-dependent cytotoxicity (AHG-CDC). Class II antibodies were not evaluated. In 2003, we introduced solid-phase antibody screening using flow-based beads and flow crossmatching. We were interested to know whether pretransplant human leukocyte antigen (HLA) antibodies or a positive flow crossmatch impacted islet function post-transplant. A total of 152 islet transplants was performed in 81 patients. Islet function was determined by a positive C-peptide. Results were analyzed by procedure. Class I and class II panel reactive antibody (PRA) > 15% and donor-specific antibodies (DSA) were associated with a reduced C-peptide survival (p < 0.0001 and p < 0.0001, respectively). A positive T- and or B-cell crossmatch alone was not. Pretransplant HLA antibodies detectable by flow beads are associated with reduced graft survival. This suggests that the sirolimus and low-dose tacrolimus-based immunosuppression may not control the alloimmune response in this presensitized population and individuals with a PRA > 15% may require more aggressive inductive and maintenance immunosuppression, or represent a group that may not benefit from islet transplantation. [source] Prolonged Survival of Allogeneic Islets in Cynomolgus Monkeys After Short-Term Anti-CD154-Based Therapy: Nonimmunologic Graft Failure?AMERICAN JOURNAL OF TRANSPLANTATION, Issue 4 2006M. Koulmanda Conventional drug therapy and several anti-CD154 mAb-based regimens were tested in the nonhuman primate (NHP) islet allograft model and found to be inadequate because islets were lost to rejection. Short-term therapy with an optimized donor-specific transfusion (DST) + rapamycin (RPM) + anti-CD154 mAb regimen enables immunosuppression drug-free islet allograft function for months following cessation of therapy in the NHP islet allograft model. After a substantial period of drug-free graft function, these allografts slowly and progressively lost function. Pathologic studies failed to identify islet allograft rejection as a destructive islet invasive lymphocytic infiltration of the allograft was not detected. To evaluate the mechanism, immunologic versus nonimmunologic, of the late islet allograft loss in hosts receiving the optimized therapeutic regimen, we performed experiments with islet autografts and studied islet function in NHPs with partial pancreatectomy. The results in both experiments utilizing autologous islet allografts and partially pancreatectomized hosts reinforce the view that the presence of a marginal islet mass leads to slowly progressive nonimmunological islet loss. Long-term clinically successful islet cell transplantation cannot be realized in the absence of parallel improvements in tolerizing regimens and in the preparation of adequate numbers of islets. [source] |