Island Flora (island + flora)

Distribution by Scientific Domains


Selected Abstracts


The Azores diversity enigma: why are there so few Azorean endemic flowering plants and why are they so widespread?

JOURNAL OF BIOGEOGRAPHY, Issue 1 2010
Mark A. Carine
Abstract Aim, Endemism in the flora of the Azores is high (33%) but in other respects, notably the paucity of evolutionary radiations and the widespread distribution of most endemics, the flora differs markedly from the floras of the other Macaronesian archipelagos. We evaluate hypotheses to explain the distinctive patterns observed in the Azorean endemic flora, focusing particularly on comparisons with the Canary Islands. Location, Azores archipelago. Methods, Data on the distribution and ecology of Azorean endemic flowering plants are reviewed to ascertain the incidence of inter-island allopatric speciation and adaptive, ecological speciation. These are contrasted with patterns for the Canary Islands. Patterns of endemism in the Azores and Canaries are further investigated in a phylogenetic context in relation to island age. beast was used to analyse a published molecular dataset for Pericallis (Asteraceae) and to investigate the relative ages of Azorean and Canarian lineages. Results, There are few examples of inter-island allopatric speciation in the Azorean flora, despite the considerable distances between islands and sub-archipelagos. In contrast, inter-island allopatric speciation has been an important process in the evolution of the Canary Islands flora. Phylogenetic data suggest that Azorean endemic lineages are not necessarily recent in origin. Furthermore, in Pericallis the divergence of the Azorean endemic lineage from its closest relative pre-dates the radiation of a Canarian herbaceous clade by inter-island allopatric speciation. Main conclusions, The data presented do not support suggestions that hypotheses pertaining to island age, age of endemic lineages and ecological diversity considered individually explain the lack of radiations and the widespread distribution of Azorean endemics. We suggest that palaeoclimatic variation, a factor rarely considered in macroecological studies of island diversity patterns, may be an important factor. Palaeoclimatic data suggest frequent and abrupt transitions between humid and arid conditions in the Canaries during the late Quaternary, and such an unstable climate may have driven the recent diversification of the flora by inter-island allopatric speciation, a process largely absent from the climatically more stable Azores. Further phylogenetic/phylogeographic analyses are necessary to determine the relative importance of palaeoclimate and other factors in generating the patterns observed. [source]


Breeding system, branching processes, hybrid swarm theory, and the humped-back diversity relationship as additional explanations for apparent monophyly in the Macaronesian island flora

JOURNAL OF ECOLOGY, Issue 4 2005
N. ELIZABETH SAUNDERS
Summary 1Niche pre-emption and competitive exclusion is unsatisfactory as a sole explanation for the apparent paradox of a large number of monophyletic taxa in the Macaronesian island flora. 2Undetected hybridizations have been proposed as an additional plausible explanation. In addition, hybrid swarm theory predicts that hybridizations between invading species would promote adaptive radiation. 3We suggest that branching processes and coalescence offer yet another plausible explanation allowing for multiple colonizations of closely related taxa, which, because of their later local extinction or hybridization, would lead to apparent monophyly in the molecular record. 4The cause of such widespread radiation of a few taxa has not been explained, but may involve intermediate conditions of disturbance or productivity. This proposition has, to date, only been tested in a microbial model system, but it offers a reasonable explanation for the patterns observed in the Macaronesian flora, and perhaps in other island floras worldwide. [source]


Temporal changes in the island flora at different scales in the archipelago of SW Finland

APPLIED VEGETATION SCIENCE, Issue 4 2010
Jens-Johan Hannus
Abstract Question: How have species richness and vegetation patterns changed in a group of islands in the northern Baltic Sea over a 58-yr period of changing land use and increasing eutrophication? Location: A group of 116 islands, the Brunskär sub-archipelago, in SW Finland. Methods: A complete survey of vascular plant species performed in 1947,1949 by Skult was repeated by our group using the same methodology in 2005,2007 (historical versus contemporary, respectively). DCAs were performed and total number of species, extinction,colonization rates, species frequency changes and mean Ellenberg indicator values for light, moisture and nitrogen and Eklund indicator values for dependence of human cultural influence were obtained for each island and relevé. Results: Species richness has declined on large islands and increased on small islands. The increase in number of species on small islands is driven by a strong increase in frequency of shore species, which in turn is induced by more productive shores. The decrease in species richness on large islands is related to overgrowth of open semi-natural habitats after cessation of grazing and other agricultural practices. Conclusions: After the late 1940s, open habitats, which were created and maintained by cattle grazing and other traditional agricultural activities, have declined in favour of woody shrub and forest land. Shores have been stabilized and influenced by the eutrophication of the Baltic Sea, and the vegetation has become more homogeneous. This development, resulting in lower species diversity, poses a challenge for the preservation of biodiversity both on a local and on a landscape level. [source]


Mutualism as a constraint on invasion success for legumes and rhizobia

DIVERSITY AND DISTRIBUTIONS, Issue 3 2001
Matthew A. Parker
Abstract Because hereditary symbiont transmission is normally absent in the mutualism of legume plants and root-nodule bacteria (rhizobia), dispersing plants may often arrive at new habitats where mutualist partners are too rare to provide full benefits. Factors governing invasion success were explored by analysing a system of two coupled pairwise competition models: a legume invader competing with a resident non-mutualistic plant, and a rhizobial population competing with a resident population of nonsymbiotic bacteria. The non-linear dependence of benefits on partner abundance in this mutualism creates the possibility of two alternative population size equilibria, so that a threshold density can exist for invasion. If legumes and rhizobia exceed a critical population size, both species achieve rapid population growth, while if initial densities of both species are below their respective thresholds, they remain rare and are thus vulnerable to extinction in the presence of competitors. Overall, the results indicate that legumes may often fail at colonization attempts within habitats where mutualist partners are scarce. Data on legume prevalence in island floras and rates of geographical spread by legume weeds are consistent with this inference. Predictive insights about invasiveness may emerge from comparative research on key traits identified by the model, especially the shape of the function determining the number of nodules formed at low rhizobial density. [source]


The radiation of the Cape flora, southern Africa

BIOLOGICAL REVIEWS, Issue 4 2003
H. P. LINDER
ABSTRACT The flora of the south-western tip of southern Africa, the Cape flora, with some 9000 species in an area of 90 000 km2 is much more speciose than can be expected from its area or latitude, and is comparable to that expected from the most diverse equatorial areas. The endemism of almost 70%, on the other hand, is comparable to that found on islands. This high endemism is accounted for by the ecological and geographical isolation of the Cape Floristic Region, but explanations for the high species richness are not so easily found. The high species richness is accentuated when its taxonomic distribution is investigated: almost half of the total species richness of the area is accounted for by 33,Cape floral clades'. These are clades which may have initially diversified in the region, and of which at least half the species are still found in the Cape Floristic Region. Such a high contribution by a very small number of clades is typical of island floras, not of mainland floras. The start of the radiation of these clades has been dated by molecular clock techniques to between 18 million years ago (Mya)(Pelargonium) and 8 Mya (Phylica), but only six radiations have been dated to date. The fossil evidence for the dating of the radiation is shown to be largely speculative. The Cenozoic environmental history of southern Africa is reviewed in search of possible triggers for the radiations, climatic changes emerge as the most likely candidate. Due to a very poor fossil record, the climatic history has to be inferred from larger scale patterns, these suggest large-scale fluctuations between summer wet (Palaeocene, Early Miocene)and summer dry climates (Oligocene, Middle Miocene to present). The massive speciation in the Cape flora might be accounted for by the diverse limitations to gene flow (dissected landscapes, pollinator specialisation, long flowering times allowing much phenological specialisation), as well as a richly complex environment providing a diversity of selective forces (geographically variable climate, much altitude variation, different soil types, rocky terrain providing many micro-niches, and regular fires providing both intermediate disturbances, as well as different ways of surviving the fires). However, much of this is based on correlation, and there is a great need for (a)experimental testing of the proposed speciation mechanisms, (b)more molecular clock estimates of the age and pattern of the radiations, and (c)more fossil evidence bearing on the past climates. [source]


Darwin on island plants

BOTANICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 1 2009
SHERWIN CARLQUIST fls
Islands played a key role in Charles Darwin's observations and experiments on plant dispersal. By means of these experiments, he expunged the old idea that a given species could originate at multiple times and in multiple places. More importantly, by seeing the capabilities for dispersal of plant seeds, fruits and branches, he was able to develop ideas of how plants reach islands and thus he is one of the founders of plant biogeography. For facts regarding floristic distribution of plants, Darwin relied on other workers, most notably Sir Joseph Dalton Hooker. Among his insights were the differences between oceanic and continental islands on a floristic basis, ideas on how age of island and distance from mainland areas influenced composition of island floras, the nature of endemism on islands and the role islands and archipelagos served as stepping stones in dispersal. Ingenious at proposing hypotheses, but always respectful of facts, Darwin sought explanations for plant adaptations on islands at a time when knowledge of island botany was little more than floristic in nature. These explanations are compared with selected recent works in island botany. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 161, 20,25. [source]


Patterns of species richness on very small islands: the plants of the Aegean archipelago

JOURNAL OF BIOGEOGRAPHY, Issue 7 2006
Maria Panitsa
Abstract Aim, To investigate the species,area relationship (SAR) of plants on very small islands, to examine the effect of other factors on species richness, and to check for a possible Small Island Effect (SIE). Location, The study used data on the floral composition of 86 very small islands (all < 0.050 km2) of the Aegean archipelago (Greece). Methods, We used standard techniques for linear and nonlinear regression in order to check several models of the SAR, and stepwise multiple regression to check for the effects of factors other than area on species richness (,habitat diversity', elevation, and distance from nearest large island), as well as the performance of the Choros model. We also checked for the SAR of certain taxonomic and ecological plant groups that are of special importance in eastern Mediterranean islands, such as halophytes, therophytes, Leguminosae and Gramineae. We used one-way anova to check for differences in richness between grazed and non-grazed islands, and we explored possible effects of nesting seabirds on the islands' flora. Results, Area explained a small percentage of total species richness variance in all cases. The linearized power model of the SAR provided the best fit for the total species list and several subgroups of species, while the semi-log model provided better fits for grazed islands, grasses and therophytes. None of the nonlinear models explained more variance. The slope of the SAR was very high, mainly due to the contribution of non-grazed islands. No significant SIE could be detected. The Choros model explained more variance than all SARs, although a large amount of variance of species richness still remained unexplained. Elevation was found to be the only important factor, other than area, to influence species richness. Habitat diversity did not seem important, although there were serious methodological problems in properly defining it, especially for plants. Grazing was an important factor influencing the flora of small islands. Grazed islands were richer than non-grazed, but the response of their species richness to area was particularly low, indicating decreased floral heterogeneity among islands. We did not detect any important effects of the presence of nesting seabird colonies. Main conclusions, Species richness on small islands may behave idiosyncratically, but this does not always lead to a typical SIE. Plants of Aegean islets conform to the classical Arrhenius model of the SAR, a result mainly due to the contribution of non-grazed islands. At the same time, the factors examined explain a small portion of total variance in species richness, indicating the possible contribution of other, non-standard factors, or even of stochastic effects. The proper definition of habitat diversity as pertaining to the taxon examined in each case is a recurrent problem in such studies. Nevertheless, the combined effect of area and a proxy for environmental heterogeneity is once again superior to area alone in explaining species richness. [source]