Irregular Galaxies (irregular + galaxy)

Distribution by Scientific Domains

Kinds of Irregular Galaxies

  • dwarf irregular galaxy


  • Selected Abstracts


    Life in the last lane: star formation and chemical evolution in an extremely gas rich dwarf

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2008
    Ayesha Begum
    ABSTRACT We present an analysis of H i, H, and oxygen abundance data for NGC 3741. This galaxy has a very extended gas disc (,8.8 times the Holmberg radius), and a dark-to-luminous (i.e. stellar) mass ratio of ,149, which makes it one of the ,darkest' dwarf irregular galaxies known. However, its ratio of baryon (i.e. gas + stellar) mass to dark mass is typical of that in galaxies. Our new high-resolution H i images of the galaxy show evidence for a large-scale (purely gaseous) spiral arm and central bar. From our H i data, a rotation curve can be derived out to ,37,44 disc scalelengths in the J and B bands, respectively. This is just slightly short of the radius at which one would expect a Navarro,Frenk,White type rotation curve to start falling. The galaxy has an integrated star formation rate (SFR) of ,0.0034 M, yr,1, while the average SFR within the optical disc is ,0.0049 M, yr,1 kpc,2. Despite the gaseous spiral feature and the ongoing star formation, we find that the global gas density in NGC 3741 is significantly lower than the Toomre instability criterion. This is consistent with the behaviour seen in other dwarf galaxies. We also find that the SFR is consistent with that expected from the observed correlations between H i mass and SFR and the global Kennicutt,Schmidt law, respectively. We measure the oxygen abundance to be 12 + log(O/H) = 7.66 ± 0.10, which is consistent with that expected from the metallicity,luminosity relation, despite its extreme gas mass ratio. We also examine the issue of chemical evolution of NGC 3741 in the context of the closed-box model of chemical evolution. The effective oxygen yield of NGC 3741 is consistent with recent model estimates of closed-box yields, provided one assumes that the gas has been efficiently mixed all the way to the edge of the H i disc (i.e. greater than eight times the optical radius). This seems a priori unlikely. On the other hand, using a sample of galaxies with both interferometric H i maps and chemical abundance measurements, we find that the effective yield is anticorrelated with the total dynamical mass, as expected in leaky box models. [source]


    GHASP: an H, kinematic survey of spiral and irregular galaxies , V. Dark matter distribution in 36 nearby spiral galaxies

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2008
    M. Spano
    ABSTRACT The results obtained from a study of the mass distribution of 36 spiral galaxies are presented. The galaxies were observed using Fabry,Perot interferometry as part of the GHASP survey. The main aim of obtaining high-resolution H, 2D velocity fields is to define more accurately the rising part of the rotation curves which should allow to better constrain the parameters of the mass distribution. The H, velocities were combined with low resolution H i data from the literature, when available. Combining the kinematical data with photometric data, mass models were derived from these rotation curves using two different functional forms for the halo: an isothermal sphere (ISO) and a Navarro,Frenk,White (NFW) profile. For the galaxies already modelled by other authors, the results tend to agree. Our results point at the existence of a constant density core in the centre of the dark matter haloes rather than a cuspy core, whatever the type of the galaxy from Sab to Im. This extends to all types the result already obtained by other authors studying dwarf and low surface brightness galaxies but would necessitate a larger sample of galaxies to conclude more strongly. Whatever model is used (ISO or NFW), small core radius haloes have higher central densities, again for all morphological types. We confirm different halo scaling laws, such as the correlations between the core radius and the central density of the halo with the absolute magnitude of a galaxy: low-luminosity galaxies have small core radius and high central density. We find that the product of the central density with the core radius of the dark matter halo is nearly constant, whatever the model and whatever the absolute magnitude of the galaxy. This suggests that the halo surface density is independent from the galaxy type. [source]


    Variations in 24-,m morphologies among galaxies in the Spitzer Infrared Nearby Galaxies Survey: new insights into the Hubble sequence

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2007
    G. J. Bendo
    ABSTRACT To study the distribution of star formation and dust emission within nearby galaxies, we measured five morphological parameters in the 3.6- and 24-,m wavebands for 65 galaxies in the Spitzer Infrared Nearby Galaxies Survey (SINGS) and eight galaxies that were serendipitously observed by SINGS. The morphological parameters demonstrate strong variations along the Hubble sequence, including statistically significant differences between S0/a-Sab and Sc-Sd galaxies. Early-type galaxies are generally found to be compact, centralized, symmetric sources in the 24-,m band, while late-type galaxies are generally found to be extended, asymmetric sources. These results suggest that the processes that increase the real or apparent sizes of galaxies' bulges also lead to more centralized 24-,m dust emission. Several phenomena, such as strong nuclear star formation, Seyfert activity, or outer ring structures, may cause galaxies to deviate from the general morphological trends observed at 24 ,m. We also note that the 24-,m morphologies of Sdm-Im galaxies are quite varied, with some objects appearing very compact and symmetric but others appearing diffuse and asymmetric. These variations reflect the wide variation in star formation in irregular galaxies as observed at other wavelengths. The variations in the 24-,m morphological parameters across the Hubble sequence mirror many of the morphological trends seen in other tracers of the ISM and in stellar emission. However, the 24-,m morphological parameters for the galaxies in this sample do not match the morphological parameters measured in the stellar wavebands. This implies that the distribution of dust emission is related to but not equivalent to the distribution of stellar emission. [source]


    Cosmic evolution of metal densities: the enrichment of the intergalactic medium

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2006
    F. Calura
    ABSTRACT By means of chemo-photometric models for galaxies of different morphological types, we have carried out a detailed study of the history of element production by spheroidal and dwarf irregular galaxies. Spheroidal galaxies suffer a strong and intense star formation episode at early times. In dwarf irregulars, the star formation rate (SFR) proceeds at a low regime but continuously. Both galactic types enrich the intergalactic medium (IGM) with metals by means of galactic winds. We have assumed that the galaxy number density is fixed and normalized to the value of the optical luminosity function observed in the local Universe. Our models allow us to investigate in detail how the metal fractions locked up in stars in spheroids and dwarf irregulars, those present in the interstellar medium (ISM) and those ejected into the IGM have changed with cosmic time. By relaxing the instantaneous recycling approximation and taking into account stellar lifetimes, for the first time we have studied the evolution of the chemical abundance ratios in the IGM and compared our predictions with a set of observations by various authors. Our results indicate that the bulk of the IGM enrichment is due to spheroids, with dwarf irregular galaxies playing a negligible role. Our predictions grossly account for the [O/H] observed in the IGM at high redshift, but overestimate the [C/H]. Furthermore, it appears hard to reproduce the abundance ratios observed in the high-redshift IGM. Some possible explanations are discussed in the text. This is the first attempt to study the abundance ratios in the IGM by means of detailed chemical evolution models which take into account the stellar lifetimes. Numerical simulations adopting our chemical evolution prescriptions could be useful to improve our understanding of the IGM chemical enrichment. [source]


    Broad-band colours of Virgo cluster low surface brightness dwarf irregular galaxies

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2001
    Ana B. Heller
    We present UBVRI images and surface photometry of a complete sample of 29 low-luminosity dwarf irregular galaxies in the Virgo cluster, for which we derive central surface brightnesses, scalelengths, integrated magnitudes and median colours. The colour distributions are discussed in terms of radial surface brightness profiles, and colour gradients are interpreted and compared with corresponding ones for low surface-brightness (LSB) spiral galaxies. By combining broad-band and narrow-band filter observations, the past and current influences of the cluster environment on the evolution of LSB dwarf irregular galaxies is evaluated. [source]


    Thick gas discs in faint dwarf galaxies

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY: LETTERS (ELECTRONIC), Issue 1 2010
    Sambit Roychowdhury
    ABSTRACT We determine the intrinsic axial ratio distribution of the gas discs of extremely faint MB < ,14.5 dwarf irregular galaxies. We start with the measured (beam corrected) distribution of apparent axial ratios in the H i 21-cm images of dwarf irregular galaxies observed as part of the Faint Irregular Galaxy GMRT Survey (FIGGS). Assuming that the discs can be approximated as oblate spheroids, the intrinsic axial ratio distribution can be obtained from the observed apparent axial ratio distribution. We use a variety of methods to do this, and our final results are based on using Lucy's deconvolution algorithm. This method is constrained to produce physically plausible distributions, and also has the added advantage of allowing for observational errors to be accounted for. While one might a priori expect that gas discs would be thin (because collisions between gas clouds would cause them to quickly settle down to a thin disc), we find that the H i discs of faint dwarf irregulars are quite thick, with mean axial ratio ,q,, 0.6. While this is substantially larger than the typical value of ,0.2 for the stellar discs of large spiral galaxies, it is consistent with the much larger ratio of velocity dispersion to rotational velocity (,/vc) in dwarf galaxy H i discs as compared to that in spiral galaxies. Our findings have implications for studies of the mass distribution and the Tully,Fisher relation for faint dwarf irregular galaxies, where it is often assumed that the gas is in a thin disc. [source]