Iron Transport System (iron + transport_system)

Distribution by Scientific Domains


Selected Abstracts


Molecular cloning and functional analysis of Photobacterium damselae subsp. piscicida haem receptor gene

JOURNAL OF FISH DISEASES, Issue 2 2005
H Naka
Abstract A haem receptor gene from Photobacterium damselae subsp. piscicida (formerly known as Pasteurella piscicida) has been cloned, sequenced and analysed for its function. The gene, designated as pph, has an open reading frame consisting of 2154 bp, a predicted 718 amino acid residues and exists as a single copy. It is homologous with the haem receptors of Vibrio anguillarum hupA, V. cholerae hutA, V. mimicus mhuA and V. vulnificus hupA at 32.7, 32.7, 45.6 and 30.9%, respectively, and is highly conserved, consisting of a Phe-Arg-Ala-Pro sequence (FRAP), an iron transport related molecule (TonB) and a Asn-Pron-Asn-Leu sequence (NPNL), binding motifs associated with haem receptors. As a single gene knockout mutant P. damselae subsp. piscicida was able to bind haem in the absence of pph, suggesting that other receptors may be involved in its iron transport system. This study shows that the P. damselae subsp. piscicida pph belongs to the haem receptor family, is conserved and that its iron-binding system may involve more than one receptor. [source]


Iron uptake is essential for Escherichia coli survival in drinking water

LETTERS IN APPLIED MICROBIOLOGY, Issue 1 2006
D. Grandjean
Abstract Aims:, The aim of this study was to elucidate if the need for iron for Escherichia coli to remain cultivable in a poorly nutritive medium such as the drinking water uses the iron transport system via the siderophores. Methods and Results:, Environmental strains of E. coli (isolated from a drinking water network), referenced strains of E. coli and mutants deficient in TonB, an essential protein for iron(III) acquisition, were incubated for 3 weeks at 25°C, in sterile drinking water with and without lepidocrocite (, -FeOOH), an insoluble iron corrosion product. Only cells with a functional iron transport system were able to survive throughout the weeks. Conclusions:, The iron transport system via protein TonB plays an essential role on the survival of E. coli in a weakly nutritive medium like drinking water. Significance and Impacts of the Study:, Iron is a key parameter involved in coliform persistence in drinking water distribution systems. [source]


Haem utilization in Vibrio cholerae involves multiple TonB-dependent haem receptors

MOLECULAR MICROBIOLOGY, Issue 3 2001
Alexandra R. Mey
Vibrio cholerae has multiple iron transport systems, one of which involves haem uptake through the outer membrane receptor HutA. A hutA mutant had only a slight defect in growth using haemin as the iron source, and we show here that V. cholerae encodes two additional TonB-dependent haem receptors, HutR and HasR. HutR has significant homology to HutA as well as to other outer membrane haem receptors. Membrane fractionation confirmed that HutR is present in the outer membrane. The hutR gene was co-transcribed with the upstream gene ptrB, and expression from the ptrB promoter was negatively regulated by iron. A hutA, hutR mutant was significantly impaired, but not completely defective, in the ability to use haemin as the sole iron source. HasR is most similar to the haemophore-utilizing haem receptors from Pseudomonas aeruginosa and Serratia marcescens. A mutant defective in all three haem receptors was unable to use haemin as an iron source. HutA and HutR functioned with either V. cholerae TonB1 or TonB2, but haemin transport through either receptor was more efficient in strains carrying the tonB1 system genes. In contrast, haemin uptake through HasR was TonB2 dependent. Efficient utilization of haemoglobin as an iron source required HutA and TonB1. The triple haem receptor mutant exhibited no defect in its ability to compete with its Vib, parental strain in an infant mouse model of infection, indicating that additional iron sources are present in vivo. V. cholerae used haem derived from marine invertebrate haemoglobins, suggesting that haem may be available to V. cholerae growing in the marine environment. [source]