Home About us Contact | |||
Iron Sulfide (iron + sulfide)
Selected AbstractsMolecular characterization and corrosion behavior of thermophilic (55,°C) SRB Desulfotomaculum kuznetsovii isolated from cooling tower in petroleum refineryMATERIALS AND CORROSION/WERKSTOFFE UND KORROSION, Issue 9 2009B. Anandkumar Abstract Desulfotomaculum kuznetsovii (D. kuznetsovii), a thermophilic sulfate-reducing bacterium (SRB), was identified in a cooling tower of a petroleum refinery by 16S rRNA gene sequencing and its functional gene encoding dissimilatory sulfite reductase (dsrAB). The thermophilic sulfate-reducing bacterial species have been reported for the first time in the cooling towers of an Indian petroleum refinery. The protein coded by dsrAB gene was cloned, expressed, and identified using recombinant DNA technology. Weight loss method, electrochemical and surface analysis showed the corrosion behavior of the isolate. In the presence of D. kuznetsovii, the corrosion rate was higher when compared to control at 55,°C. It suppresses the anodic reaction and enhances the cathodic reaction by the production of organic complex and iron sulfide, respectively. Numerous pitting were noticed on mild steel which is due to the presence of D. kuznetsovii and its role in the corrosion process has been discussed. [source] Organic matter from comet 81P/Wild 2, IDPs, and carbonaceous meteorites; similarities and differencesMETEORITICS & PLANETARY SCIENCE, Issue 10 2009S. Wirick Sections were analyzed using a scanning transmission X-ray microscope (SXTM) and carbon X-ray absorption near edge structure (XANES) spectra were collected. We compared the carbon XANES spectra of these Wild 2 samples with a database of spectra on thirty-four interplanetary dust particles (IDPs) and with several meteorites. Two of the particles analyzed are iron sulfides and there is evidence that an aliphatic compound associated with these particles can survive high temperatures. An iron sulfide from an IDP demonstrates the same phenomenon. Another, mostly carbon free containing particle radiation damaged, something we have not observed in any IDPs we have analyzed or any indigenous organic matter from the carbonaceous meteorites, Tagish Lake, Orgueil, Bells and Murchison. The carbonaceous material associated with this particle showed no mass loss during the initial analysis but chemically changed over a period of two months. The carbon XANES spectra of the other four particles varied more than spectra from IDPs and indigenous organic matter from meteorites. Comparison of the carbon XANES spectra from these particles with 1. the carbon XANES spectra from thirty-four IDPs (<15 micron in size) and 2. the carbon XANES spectra from carbonaceous material from the Tagish Lake, Orgueil, Bells, and Murchison meteorites show that 81P/Wild 2 carbon XANES spectra are more similar to IDP carbon XANES spectra then to the carbon XANES spectra of meteorites. [source] Deposition of copper-doped iron sulfide (CuxFe1,xS) thin films using aerosol-assisted chemical vapor deposition techniqueAPPLIED ORGANOMETALLIC CHEMISTRY, Issue 10 2010Sujit D. Disale Abstract Copper-doped iron sulfide (CuxFe1,xS, x = 0.010,0.180) thin films were deposited using a single-source precursor, Cu(LH)2Cl2 (LH = monoacetylferrocene thiosemicarbazone), by aerosol-assisted chemical vapor deposition technique. The Cu-doped FeS thin films were deposited at different substrate temperatures, i.e. 250, 300, 350, 400 and 450 °C. The deposited thin films were characterized by X-ray diffraction (XRD) patterns, Raman spectra, scanning electron microscopy, energy dispersive X-ray analysis (EDX) and atomic force microscopy. XRD studies of Cu-doped FeS thin films at all the temperatures revealed formation of single-phase FeS structure. With increasing substrate temperature from 250 to 450 °C, there was change in morphology from wafer-like to cylindrical plate-like. EDX analysis showed that the doping percentage of copper increased as the substrate temperature increased from 250 to 450 °C. Raman data supports the doping of copper in FeS films. Copyright © 2010 John Wiley & Sons, Ltd. [source] Cerium iron sulfide, Ce3Fe1.94S7ACTA CRYSTALLOGRAPHICA SECTION C, Issue 8 2004Allison M. Mills Tricerium(III) diiron(II,III) heptasulfide, Ce3Fe1.94S7, crystallizes in the polar hexagonal space group P63 and adopts the Ce6Al3.33S14 structure type. The Fe atoms occupy both tetrahedral and octahedral sites. Isolated FeS4 tetrahedra, all pointing in the same direction, are stacked along the threefold rotation axes. Chains of face-sharing FeS6 octahedra propagate along the 63 axis. Vacancies resulting from the partial oxidation of Fe2+ to Fe3+ occur exclusively in the octahedral Fe sites. The Ce atoms are coordinated by [7+1] S atoms, which form bicapped trigonal prisms. [source] Organic matter from comet 81P/Wild 2, IDPs, and carbonaceous meteorites; similarities and differencesMETEORITICS & PLANETARY SCIENCE, Issue 10 2009S. Wirick Sections were analyzed using a scanning transmission X-ray microscope (SXTM) and carbon X-ray absorption near edge structure (XANES) spectra were collected. We compared the carbon XANES spectra of these Wild 2 samples with a database of spectra on thirty-four interplanetary dust particles (IDPs) and with several meteorites. Two of the particles analyzed are iron sulfides and there is evidence that an aliphatic compound associated with these particles can survive high temperatures. An iron sulfide from an IDP demonstrates the same phenomenon. Another, mostly carbon free containing particle radiation damaged, something we have not observed in any IDPs we have analyzed or any indigenous organic matter from the carbonaceous meteorites, Tagish Lake, Orgueil, Bells and Murchison. The carbonaceous material associated with this particle showed no mass loss during the initial analysis but chemically changed over a period of two months. The carbon XANES spectra of the other four particles varied more than spectra from IDPs and indigenous organic matter from meteorites. Comparison of the carbon XANES spectra from these particles with 1. the carbon XANES spectra from thirty-four IDPs (<15 micron in size) and 2. the carbon XANES spectra from carbonaceous material from the Tagish Lake, Orgueil, Bells, and Murchison meteorites show that 81P/Wild 2 carbon XANES spectra are more similar to IDP carbon XANES spectra then to the carbon XANES spectra of meteorites. [source] |