Inversion Technique (inversion + technique)

Distribution by Scientific Domains


Selected Abstracts


Partial Aortic Root Remodeling with an Adventitial Inversion Technique for an Acute Type A Aortic Dissection

JOURNAL OF CARDIAC SURGERY, Issue 3 2010
Junji Yunoki M.D.
Postoperative computed tomography at six months showed no dissection or pseudoaneurysm in the aortic root.,(J Card Surg 2010;25:327-329) [source]


Imaging fractures and sedimentary fabrics using shear wave splitting measurements made on passive seismic data

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2009
J. P. Verdon
SUMMARY The ability to detect aligned fractures using seismic anisotropy provides a valuable tool for exploiting hydrocarbon reservoirs better. Perhaps the most direct way of identifying anisotropy is by observing shear wave splitting. However, the interaction of shear waves with subsurface structure is often complicated. Although fractures in hydrocarbon reservoirs are usually subvertical, shear waves recorded on downhole receivers from microseismic events in or near the reservoir are not likely to have travelled vertically. As such, interpreting splitting measurements made on such waves is a non-trivial problem. Here we develop an approach to model the effects of subsurface structure on non-vertically propagating shear waves. Rock physics theory is used to model the effects of sedimentary fabrics as well as fractures, allowing us to use shear wave splitting measurements to invert for aligned fractures. We use synthetic examples to demonstrate how it is possible to assess in advance how well splitting measurements will image structures, and how this is highly dependent on the available range of ray coverage. Finally, we demonstrate the inversion technique on a passive seismic data set collected during hydraulic fracture stimulation. Despite an unfavourable source,receiver geometry, the strike of an aligned fracture set is accurately identified. [source]


Energy Group optimization for forward and inverse problems in nuclear engineering: application to downwell-logging problems

GEOPHYSICAL PROSPECTING, Issue 2 2006
Elsa Aristodemou
ABSTRACT Simulating radiation transport of neutral particles (neutrons and ,-ray photons) within subsurface formations has been an area of research in the nuclear well-logging community since the 1960s, with many researchers exploiting existing computational tools already available within the nuclear reactor community. Deterministic codes became a popular tool, with the radiation transport equation being solved using a discretization of phase-space of the problem (energy, angle, space and time). The energy discretization in such codes is based on the multigroup approximation, or equivalently the discrete finite-difference energy approximation. One of the uncertainties, therefore, of simulating radiation transport problems, has become the multigroup energy structure. The nuclear reactor community has tackled the problem by optimizing existing nuclear cross-sectional libraries using a variety of group-collapsing codes, whilst the nuclear well-logging community has relied, until now, on libraries used in the nuclear reactor community. However, although the utilization of such libraries has been extremely useful in the past, it has also become clear that a larger number of energy groups were available than was necessary for the well-logging problems. It was obvious, therefore, that a multigroup energy structure specific to the needs of the nuclear well-logging community needed to be established. This would have the benefit of reducing computational time (the ultimate aim of this work) for both the stochastic and deterministic calculations since computational time increases with the number of energy groups. We, therefore, present in this study two methodologies that enable the optimization of any multigroup neutron,, energy structure. Although we test our theoretical approaches on nuclear well-logging synthetic data, the methodologies can be applied to other radiation transport problems that use the multigroup energy approximation. The first approach considers the effect of collapsing the neutron groups by solving the forward transport problem directly using the deterministic code EVENT, and obtaining neutron and ,-ray fluxes deterministically for the different group-collapsing options. The best collapsing option is chosen as the one which minimizes the effect on the ,-ray spectrum. During this methodology, parallel processing is implemented to reduce computational times. The second approach uses the uncollapsed output from neural network simulations in order to estimate the new, collapsed fluxes for the different collapsing cases. Subsequently, an inversion technique is used which calculates the properties of the subsurface, based on the collapsed fluxes. The best collapsing option is chosen as the one that predicts the subsurface properties with a minimal error. The fundamental difference between the two methodologies relates to their effect on the generated ,-rays. The first methodology takes the generation of ,-rays fully into account by solving the transport equation directly. The second methodology assumes that the reduction of the neutron groups has no effect on the ,-ray fluxes. It does, however, utilize an inversion scheme to predict the subsurface properties reliably, and it looks at the effect of collapsing the neutron groups on these predictions. Although the second procedure is favoured because of (a) the speed with which a solution can be obtained and (b) the application of an inversion scheme, its results need to be validated against a physically more stringent methodology. A comparison of the two methodologies is therefore given. [source]


A radiomagnetotelluric survey on an oil-contaminated area near the Brazi Refinery, Romania

GEOPHYSICAL PROSPECTING, Issue 3 2005
B. Tezkan
ABSTRACT Scalar radiomagnetotelluric measurements were carried out on a contaminated test area close to the Brazi Refinery in Romania in order to detect and to monitor a 1 m thick oil layer expected at 5 m depth. Radio transmitters broadcasting in a frequency range from 10 kHz to 300 kHz were selected to observe the apparent resistivity and the phase data associated with the E- and B-polarizations. They were located parallel and perpendicular to the assumed strike direction of the contamination plume. The data were interpreted by a 2D inversion technique from which the conductivity structure of the area was derived. The 2D inversion models of all profiles on the contaminated area show a poor-conductivity zone above the groundwater table which could be associated with the oil contamination. A first attempt was also made to monitor the contaminated layer: the radiomagnetotelluric measurements were repeated on the same profiles a year later, but this time in a dry period, not in a rainy one. The 2D inversion results of the measurements in the dry period indicate that the high-resistivity layer moved closer to the surface. Additional reference measurements were then carried out on a non-contaminated area situated at a distance from the refinery, in the opposite direction to the flow of the groundwater. These reference measurements were used for the derivation of the unperturbed geology and they were also compared with the measurements of the contaminated test area. There is a significant difference in the frequency dependences of the apparent resistivities of the reference and contaminated areas, which could indicate a contamination at shallow depth. The 2D inversion results show the increase of resistivity at a depth of about 5 m beneath the contaminated area where the oil contamination is expected according to the information from the boreholes. [source]


Modelling of GPR waves for lossy media obeying a complex power law of frequency for dielectric permittivity

GEOPHYSICAL PROSPECTING, Issue 1 2004
Maksim Bano
ABSTRACT The attenuation of ground-penetrating radar (GPR) energy in the subsurface decreases and shifts the amplitude spectrum of the radar pulse to lower frequencies (absorption) with increasing traveltime and causes also a distortion of wavelet phase (dispersion). The attenuation is often expressed by the quality factor Q. For GPR studies, Q can be estimated from the ratio of the real part to the imaginary part of the dielectric permittivity. We consider a complex power function of frequency for the dielectric permittivity, and show that this dielectric response corresponds to a frequency-independent- Q or simply a constant- Q model. The phase velocity (dispersion relationship) and the absorption coefficient of electromagnetic waves also obey a frequency power law. This approach is easy to use in the frequency domain and the wave propagation can be described by two parameters only, for example Q and the phase velocity at an arbitrary reference frequency. This simplicity makes it practical for any inversion technique. Furthermore, by using the Hilbert transform relating the velocity and the absorption coefficient (which obeys a frequency power law), we find the same dispersion relationship for the phase velocity. Both approaches are valid for a constant value of Q over a restricted frequency-bandwidth, and are applicable in a material that is assumed to have no instantaneous dielectric response. Many GPR profiles acquired in a dry aeolian environment have shown a strong reflectivity inside dunes. Changes in water content are believed to be the origin of this reflectivity. We model the radar reflections from the bottom of a dry aeolian dune using the 1D wavelet modelling method. We discuss the choice of the reference wavelet in this modelling approach. A trial-and-error match of modelled and observed data was performed to estimate the optimum set of parameters characterizing the materials composing the site. Additionally, by combining the complex refractive index method (CRIM) and/or Topp equations for the bulk permittivity (dielectric constant) of moist sandy soils with a frequency power law for the dielectric response, we introduce them into the expression for the reflection coefficient. Using this method, we can estimate the water content and explain its effect on the reflection coefficient and on wavelet modelling. [source]


AVO investigations of shallow marine sediments

GEOPHYSICAL PROSPECTING, Issue 2 2001
M. Riedel
Amplitude-variation-with-offset (AVO) analysis is based on the Zoeppritz equations, which enable the computation of reflection and transmission coefficients as a function of offset or angle of incidence. High-frequency (up to 700 Hz) AVO studies, presented here, have been used to determine the physical properties of sediments in a shallow marine environment (20 m water depth). The properties that can be constrained are P- and S-wave velocities, bulk density and acoustic attenuation. The use of higher frequencies requires special analysis including careful geometry and source and receiver directivity corrections. In the past, marine sediments have been modelled as elastic materials. However, viscoelastic models which include absorption are more realistic. At angles of incidence greater than 40°, AVO functions derived from viscoelastic models differ from those with purely elastic properties in the absence of a critical angle of incidence. The influence of S-wave velocity on the reflection coefficient is small (especially for low S-wave velocities encountered at the sea-floor). Thus, it is difficult to extract the S-wave parameter from AVO trends. On the other hand, P-wave velocity and density show a considerably stronger effect. Attenuation (described by the quality factor Q) influences the reflection coefficient but could not be determined uniquely from the AVO functions. In order to measure the reflection coefficient in a seismogram, the amplitudes of the direct wave and the sea-floor reflection in a common-midpoint (CMP) gather are determined and corrected for spherical divergence as well as source and streamer directivity. At CMP locations showing the different AVO characteristics of a mud and a boulder clay, the sediment physical properties are determined by using a sequential-quadratic-programming (SQP) inversion technique. The inverted sediment physical properties for the mud are: P-wave velocity ,=1450±25 m/s, S-wave velocity ,=90±35 m/s, density ,=1220±45 kg/m3, quality factor for P-wave QP=15±200, quality factor for S-wave QS=10±30. The inverted sediment physical properties for the boulder clay are: ,=1620±45 m/s,,=360±200 m/s,,=1380±85 kg/m3,QP=790±660,QS=25±10. [source]


Inversion of terrestrial ecosystem model parameter values against eddy covariance measurements by Monte Carlo sampling

GLOBAL CHANGE BIOLOGY, Issue 8 2005
Wolfgang Knorr
Abstract Effective measures to counter the rising levels of carbon dioxide in the Earth's atmosphere require that we better understand the functioning of the global carbon cycle. Uncertainties about, in particular, the terrestrial carbon cycle's response to climate change remain high. We use a well-known stochastic inversion technique originally developed in nuclear physics, the Metropolis algorithm, to determine the full probability density functions (PDFs) of parameters of a terrestrial ecosystem model. By thus assimilating half-hourly eddy covariance measurements of CO2 and water fluxes, we can substantially reduce the uncertainty of approximately five model parameters, depending on prior uncertainties. Further analysis of the posterior PDF shows that almost all parameters are nearly Gaussian distributed, and reveals some distinct groups of parameters that are constrained together. We show that after assimilating only 7 days of measurements, uncertainties for net carbon uptake over 2 years for the forest site can be substantially reduced, with the median estimate in excellent agreement with measurements. [source]


Backcalculating pavement structural properties using a Nelder,Mead simplex search

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 11 2009
Jin-Hak Yi
Abstract A structural integrity assessment technique of pavements that considers the backcalculation of material properties is herein proposed. In order to carry out the backcalculation, a Nelder,Mead simplex (NMS) search is applied to estimate the elastic moduli of layered structures using the deflection data simulated by falling weight deflectometer (FWD) tests. In order to utilize a forward calculation engine of the numerical simulation in the FWD testing, a wave analysis program of layered pavement systems is used based on a spectral element method. The performance of the NMS inversion technique is evaluated based on a comparison with the Levenberg,Marquardt method. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Enhancing the oral bioavailability of the poorly soluble drug dicumarol with a bioadhesive polymer

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 8 2003
Chris G. Thanos
Abstract This article investigates the effect of particle size and the incorporation of a bioadhesive polymer, poly(fumaric- co -sebacic) anhydride p(FA:SA), on the relative bioavailability of dicumarol. A novel method was used to reduce particle size of the drug, and encapsulated formulations were fabricated using a phase inversion technique to produce nanospheres and microspheres with varying size. Groups of Yorkshire swine were catheterized and gavaged after fasting for 12 h with each formulation in a 50 mg/mL suspension. Blood was collected at different time points, from 0 to 96 h, and pharmacokinetic analysis revealed that formulations incorporating the smaller drug particles showed the highest bioavailability: micronized drug with 7% p(FA:SA) 17:83 polymer had 190% relative bioavailability, and phase inverted p(FA:SA) 17:83 microspheres with 31% (w/w) loading had 198% relative bioavailability to spray dried formulation. Formulations with larger drug particles achieved 71% relative bioavailability. A nonadhesive formulation, fabricated with poly(lactic acid) (PLA), showed 91% relative bioavailability. Both particle size and polymer composition play a role in oral absorption of dicumarol. © 2003 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 92:1677,1689, 2003 [source]


Physical and Electrochemical Properties of PVdF-HFP/SiO2 -Based Polymer Electrolytes Prepared Using Dimethyl Acetamide Solvent and Water Non-Solvent

MACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 8 2007
Kwang Man Kim
Abstract Poly[(vinylidene fluoride)- co -hexafluoropropylene]/SiO2 polymer electrolytes were prepared by a phase inversion technique using DMAc solvent and water non-solvent. Cast film electrolytes filled with the same amount of SiO2 using DMAc were also made to compare physical and electrochemical properties. DMAc had a higher solubility to PVdF-based polymers than NMP, and DMAc produced highly porous structures with bigger cavities and influenced the reduction of crystallinity. Due to the highly porous nature of phase inversion membranes, the uptake of electrolyte solution reached more than 400% and room-temperature ionic conductivity was more than 10,3 S,·,cm,1. All of the liquid absorbed, however, did not necessarily contribute to increases in ionic conductivity. This was due to the different conduction modes of lithium cations in a complicated porous structure. Comprehensively optimizing all the properties measured, the phase inversion membrane electrolytes with 10,30 wt.-% SiO2 were the best candidates for use as the polymer electrolyte of lithium rechargeable batteries. [source]


On the kinematic deconvolution of the local neighbourhood luminosity function

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2002
C. Pichon
A method for inverting the statistical star counts equation, including proper motions, is presented; in order to break the degeneracy in that equation, it uses the supplementary constraints required by dynamical consistency. The inversion gives access to both the kinematics and the luminosity function of each population in three régimes: the singular ellipsoid, the constant ratio Schwarzschild ellipsoid plane-parallel models and the epicyclic model. This more realistic model is tailored to account for the local neighbourhood density and velocity distribution. The first model is fully investigated, both analytically and by means of a non-parametric inversion technique, while the second model is shown to be formally its equivalent. The effect of noise and incompleteness in apparent magnitude is investigated. The third model is investigated by a non-parametric inversion technique where positivity of the underlying luminosity function is explicitly accounted for. It is argued that its future application to data such as the Tycho catalogue (and in the upcoming satellite GAIA) could lead , provided that the vertical potential and or the asymmetric drift or w, are known , to a non-parametric determination of the local neighbourhood luminosity function without any reference to stellar evolution tracks. It should also yield the proportion of stars for each kinematic component and a kinematic diagnostic to split the thin disc from the thick disc or the halo. [source]


New poly ether ether ketones containing phosphorus for membrane preparation

ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 1 2010
Francesco Trotta
Abstract In this study is reported the synthetic procedure and the characterisation of novel phosphorus containing polyether ether ketone (PEEK-P). The new polymer was synthesized via direct polycondensation of 2,2-bis(3-diethylphosphono-4-hydroxyphenyl)-propane and 4,4,-difluorobenzophenone according to well known general procedure and was extensively characterized by using infrared spectroscopy (FT-IR), thermogravimetric analyses (TGA), viscosity measurements and ,H-NMR analysis. The obtained polymer is soluble in some organic solvents and the solution of phosphonated polymer could be used to obtain membranes by using the phase inversion technique. Copyright © 2009 Curtin University of Technology and John Wiley & Sons, Ltd. [source]