Inverse Modelling (inverse + modelling)

Distribution by Scientific Domains


Selected Abstracts


Is there a connection between weather at departure sites, onset of migration and timing of soaring-bird autumn migration in Israel?

GLOBAL ECOLOGY, Issue 6 2006
Judy Shamoun-Baranes
ABSTRACT Aims, Different aspects of soaring-bird migration are influenced by weather. However, the relationship between weather and the onset of soaring-bird migration, particularly in autumn, is not clear. Although long-term migration counts are often unavailable near the breeding areas of many soaring birds in the western Palaearctic, soaring-bird migration has been systematically monitored in Israel, a region where populations from large geographical areas converge. This study tests several fundamental hypotheses regarding the onset of migration and explores the connection between weather, migration onset and arrival at a distant site. Location, Globally gridded meteorological data from the breeding areas in north-eastern Europe were used as predictive variables in relation to the arrival of soaring migrants in Israel. Methods, Inverse modelling was used to study the temporal and spatial influence of weather on initiation of migration based on autumn soaring-bird migration counts in Israel. Numerous combinations of migration duration and temporal influence of meteorological variables (temperature, sea-level pressure and precipitable water) were tested with different models for meteorological sensitivity. Results, The day of arrival in Israel of white storks, honey buzzards, Levant sparrowhawks and lesser spotted eagles was significantly and strongly related to meteorological conditions in the breeding area days or even weeks before arrival in Israel. The cumulative number of days or cumulative value above or below a meteorological threshold performed significantly better than other models tested. Models provided reliable estimates of migration duration for each species. Main conclusions, The meteorological triggers of migration at the breeding grounds differed between species and were related to deteriorating living conditions and deteriorating migratory flight conditions. Soaring birds are sensitive to meteorological triggers at the same period every year and their temporal response to weather appears to be constrained by their annual routine. [source]


Spatial patterns of tree recruitment in a relict population of Pinus uncinata: forest expansion through stratified diffusion

JOURNAL OF BIOGEOGRAPHY, Issue 11 2005
J. Julio Camarero
Abstract Aim, To infer future changes in the distribution of isolated relict tree populations at the limit of a species' geographical range, a deep understanding of the regeneration niche and the spatial pattern of tree recruitment is needed. Location, A relict Pinus uncinata population located at the south-western limit of distribution of the species in the Iberian System of north-eastern Spain. Methods,Pinus uncinata individuals were mapped within a 50 × 40-m plot, and their size, age and reproductive status were estimated. Data on seed dispersal were obtained from a seed-release experiment. The regeneration niche of the species was assessed based on the associations of seedling density with substrate and understorey cover. The spatial pattern of seedlings was described using point-pattern (Ripley's K) and surface-pattern (correlograms, Moran's I) analyses. Statistical and inverse modelling were used to characterize seedling clustering. Results, Pine seedlings appeared aggregated in 6-m patches. Inverse modelling estimated a longer mean dispersal distance (27 m), which corresponded to the size of a large cluster along the north to north-eastward direction paralleled by an eastward trend of increasing seedling age. The two spatial scales of recruitment were related to two dispersal processes. The small-scale clustering of seedlings was due to local seed dispersal in open areas near the edge of Calluna vulgaris mats: the regeneration niche. The long-range expansion might be caused by less frequent medium-distance dispersal events due to the dominant north-westerly winds. Main conclusions, To understand future range shifts of marginal tree populations, data on seed dispersal, regeneration niche and spatial pattern of recruitment at local scales should be obtained. The monitoring of understorey communities should be a priority in order to predict correctly shifts in tree species range in response to global warming. [source]


Sedimentary and crustal structure from the Ellesmere Island and Greenland continental shelves onto the Lomonosov Ridge, Arctic Ocean

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2010
H. Ruth Jackson
SUMMARY On the northern passive margin of Ellesmere Island and Greenland, two long wide-angle seismic reflection/refraction (WAR) profiles and a short vertical incident reflection profile were acquired. The WAR seismic source was explosives and the receivers were vertical geophones placed on the sea ice. A 440 km long North-South profile that crossed the shelf, a bathymetric trough and onto the Lomonosov Ridge was completed. In addition, a 110 km long profile along the trough was completed. P -wave velocity models were created by forward and inverse modelling. On the shelf modelling indicates a 12 km deep sedimentary basin consisting of three layers with velocities of 2.1,2.2, 3.1,3.2 and 4.3,5.2 km s,1. Between the 3.1,3.2 km s,1 and 4.3,5.2 km s,1 layers there is a velocity discontinuity that dips seaward, consistent with a regional unconformity. The 4.3,5.2 km s,1 layer is interpreted to be Palaeozoic to Mesozoic age strata, based on local and regional geological constraints. Beneath these layers, velocities of 5.4,5.9 km s,1 are correlated with metasedimentary rocks that outcrop along the coast. These four layers continue from the shelf onto the Lomonosov Ridge. On the Ridge, the bathymetric contours define a plateau 220 km across. The plateau is a basement high, confirmed by short reflection profiles and the velocities of 5.9,6.5 km s,1. Radial magnetic anomalies emanate from the plateau indicating the volcanic nature of this feature. A lower crustal velocity of 6.2,6.7 km s,1, within the range identified on the Lomonosov Ridge near the Pole and typical of rifted continental crust, is interpreted along the entire line. The Moho, based on the WAR data, has significant relief from 17 to 27 km that is confirmed by gravity modelling and consistent with the regional tectonics. In the trough, Moho shallows eastward from a maximum depth of 19,16 km. No indication of oceanic crust was found in the bathymetric trough. [source]


Absolute S -velocity estimation from receiver functions

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 3 2007
L. Svenningsen
SUMMARY We present a novel method to recover absolute S velocities from receiver functions. For a homogeneous half-space the S velocity can be calculated from the horizontal slowness and the angle of surface particle motion for an incident P wave. Generally, the calculated S velocity is an apparent half-space value which depends on model inhomogeneity and P -waveform. We therefore, suggest to calculate such apparent half-space S velocities from low-pass filtered (smoothed) receiver functions using a suite of filter-parameters, T. The use of receiver functions neutralize the influence of the P -waveform, and the successive low-pass filterings emphasize the variation of S velocity with depth. We apply this VS,app.(T) technique to teleseismic data from three stations: FUR, BFO and SUM, situated on thick sediments, bedrock and the Greenland ice cap, respectively. The observed VS,app.(T) curves indicate the absolute S velocities from the near surface to the uppermost mantle beneath each station, clearly revealing the different geological environments. Application of linearized, iterative inversion quantify these observations into VS(z) models, practically independent of the S -velocity starting model. The obtained models show high consistency with independent geoscientific results. These cases provide also a general validation of the VS,app.(T) method. We propose the computation of VS,app.(T) curves for individual three-component broad-band stations, both for direct indication of the S velocities and for inverse modelling. [source]


Environmental isotopic and hydrochemical characteristics of groundwater systems in Daying and Qicun geothermal fields, Xinzhou Basin, Shanxi, China

HYDROLOGICAL PROCESSES, Issue 22 2010
Dongmei Han
Abstract The conceptual hydrogeological model of the low to medium temperature Daying and Qicun geothermal fields has been proposed, based on hydrochemical characteristics and isotopic compositions. The two geothermal fields are located in the Xinzhou basin of Shanxi, China and exhibit similarities in their broad-scale flow patterns. Geothermal water is derived from the regional groundwater flow system of the basin and is characterized by Cl·SO4 -Na type. Thermal water is hydrochemically distinct from cold groundwater having higher total dissolved solids (TDS) (>0·8 g/l) and Sr contents, but relatively low Ca, Mg and HCO3 contents. Most shallow groundwater belongs to local flow systems which are subject to evaporation and mixing with irrigation returns. The groundwater residence times estimated by tritium and 14C activities indicate that deep non-thermal groundwater (130,160 m) in the Daying region range from modern (post-1950s) in the piedmont area to more than 9·4 ka BP (Before Present) in the downriver area and imply that this water belong to an intermediate flow system. Thermal water in the two geothermal fields contains no detectable active 14C, indicating long residence times (>50 ka), consistent with this water being part of a large regional flow system. The mean recharge elevation estimated by using the obtained relationship Altitude (m) = , 23·8 × ,2H (, ) , 121·3, is 1980 and 1880 m for the Daying and Qicun geothermal fields, respectively. The annual infiltration rates in the Daying and Qicun geothermal fields can be estimated to be 9029 × 103 and 4107 × 103 m3/a, respectively. The variable 86Sr/87Sr values in the thermal and non-thermal groundwater in the two fields reflect different lithologies encountered along the flow path(s) and possibly different extents of water-rock interaction. Based on the analysis of groundwater flow systems in the two geothermal fields, hydrogeochemical inverse modelling was performed to indicate the possible water-rock interaction processes that occur under different scenarios. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Reconstructing floodplain sedimentation rates from heavy metal profiles by inverse modelling

HYDROLOGICAL PROCESSES, Issue 1 2002
Dr Hans Middelkoop
Abstract The embanked floodplains of the lower River Rhine in the Netherlands contain large amounts of heavy metals, which is a result of many years deposition of contaminated overbank sediments. Depending on local sedimentation rates and changing pollution trends in the past, the metal pollution varies greatly between different floodplain sections as well as vertically within the floodplain soil profiles. Maximum metal concentrations in floodplain soils vary from 30 to 130 mg/kg for Cu, from 70 to 490 mg/kg for Pb and from 170 to 1450 mg/kg for Zn. In the present study these metals were used as a tracer to reconstruct sedimentation rates at 28 sites on the lower River Rhine floodplains. The temporal trend in pollution of the lower River Rhine over the past 150 years was reconstructed on the basis of metal concentrations in sediments from small ponds within the floodplain area. Using a one-dimensional sedimentation model, average sedimentation rates over the past century were determined using an inverse modelling calibration procedure. The advantage of this method is that it uses information over an entire profile, it requires only a limited number of samples, it accounts for post-depositional redistribution of the metals, and it provides quantitative estimates of the precision of the sedimentation rates obtained. Estimated sedimentation rates vary between about 0·2 mm/year and 15 mm/year. The lowest metal concentrations are found in the distal parts of floodplain sections with low flooding frequencies and where average sedimentation rates have been less than about 5 mm/year. The largest metal accumulations occur in low-lying floodplain sections where average sedimentation rates have been more than 10 mm/year. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Spatial patterns of tree recruitment in a relict population of Pinus uncinata: forest expansion through stratified diffusion

JOURNAL OF BIOGEOGRAPHY, Issue 11 2005
J. Julio Camarero
Abstract Aim, To infer future changes in the distribution of isolated relict tree populations at the limit of a species' geographical range, a deep understanding of the regeneration niche and the spatial pattern of tree recruitment is needed. Location, A relict Pinus uncinata population located at the south-western limit of distribution of the species in the Iberian System of north-eastern Spain. Methods,Pinus uncinata individuals were mapped within a 50 × 40-m plot, and their size, age and reproductive status were estimated. Data on seed dispersal were obtained from a seed-release experiment. The regeneration niche of the species was assessed based on the associations of seedling density with substrate and understorey cover. The spatial pattern of seedlings was described using point-pattern (Ripley's K) and surface-pattern (correlograms, Moran's I) analyses. Statistical and inverse modelling were used to characterize seedling clustering. Results, Pine seedlings appeared aggregated in 6-m patches. Inverse modelling estimated a longer mean dispersal distance (27 m), which corresponded to the size of a large cluster along the north to north-eastward direction paralleled by an eastward trend of increasing seedling age. The two spatial scales of recruitment were related to two dispersal processes. The small-scale clustering of seedlings was due to local seed dispersal in open areas near the edge of Calluna vulgaris mats: the regeneration niche. The long-range expansion might be caused by less frequent medium-distance dispersal events due to the dominant north-westerly winds. Main conclusions, To understand future range shifts of marginal tree populations, data on seed dispersal, regeneration niche and spatial pattern of recruitment at local scales should be obtained. The monitoring of understorey communities should be a priority in order to predict correctly shifts in tree species range in response to global warming. [source]


Decorrugation, edge detection, and modelling of total field magnetic observations from a historic town site, Yellowstone National Park, USA

ARCHAEOLOGICAL PROSPECTION, Issue 1 2010
Steven D. Sheriff
Abstract Cinnabar, Montana is a historic town site and railroad depot near the northern edge of Yellowstone National Park and was inhabited between 1883 and 1903. Remains of foundations and old photographs help determine the area of the town, but the south and east limits are unknown. We acquired total field magnetic intensity data to help determine the full extent of the town. Randomly distributed ferrous magnetic sources on the surface and typical noise associated with acquisition complicate the signal. To separate signal and noise we applied filtering and edge detection techniques common in the aeromagnetic industry to our data. Regional removal, decorrugation, upward continuation, and edge detection successfully separated signal and noise. Following filtering, we extracted two larger anomalies from the data set. For those two anomalies, we estimated the edges of their causative sources by calculating the maxima in the horizontal gradient of their anomalies and by inverse modelling those sources; both methods yield similar results. An archaeological test unit excavation within one of the anomalies clearly indicates the remains of buried domestic features, the foundation to a house or other building associated with the late nineteenth to early twentieth century use of Cinnabar. Thus the southeast extent of Cinnabar is greater than previously thought. The lack of surface indicators or adequate historic photography precluded the identification of this buried feature without the aid of the magnetic study. Copyright © 2009 John Wiley & Sons, Ltd. [source]


A linear diagnosis of the coupled extratropical ocean,atmosphere system in the GFDL GCM

ATMOSPHERIC SCIENCE LETTERS, Issue 1 2000
Dr Matthew Newman
Diagnosing a coupled system with linear inverse modelling (LIM) can provide insight into the nature and strength of the coupling. This technique is applied to the cold season output of the GFDL GCM, forced by observed tropical Pacific SSTs and including a slab mixed layer ocean model elsewhere. It is found that extratropical SST anomalies act to enhance atmospheric thermal variability and diminish barotropic variability over the east Pacific in these GCM runs, in agreement with other theoretical and modelling studies. North-west Atlantic barotropic variability is also enhanced. However, all these feedbacks are very weak. LIM results also suggest that North Pacific extratropical SST anomalies in this model would rapidly decay without atmospheric forcing induced by tropical SST anomalies. Copyright © 2000 Royal Meteorological Society. [source]


A Bayesian approach to inverse modelling of stratigraphy, part 1: method

BASIN RESEARCH, Issue 1 2009
Karl Charvin
ABSTRACT The inference of ancient environmental conditions from their preserved response in the sedimentary record still remains an outstanding issue in stratigraphy. Since the 1970s, conceptual stratigraphic models (e.g. sequence stratigraphy) based on the underlying assumption that accommodation space is the critical control on stratigraphic architecture have been widely used. Although these methods considered more recently other possible parameters such as sediment supply and transport efficiency, they still lack in taking into account the full range of possible parameters, processes, and their complex interactions that control stratigraphic architecture. In this contribution, we present a new quantitative method for the inference of key environmental parameters (specifically sediment supply and relative sea level) that control stratigraphy. The approach combines a fully non-linear inversion scheme with a ,process,response' forward model of stratigraphy. We formulate the inverse problem using a Bayesian framework in order to sample the full range of possible solutions and explicitly build in prior geological knowledge. Our methodology combines Reversible Jump Markov chain Monte Carlo and Simulated Tempering algorithms which are able to deal with variable-dimensional inverse problems and multi-modal posterior probability distributions, respectively. The inverse scheme has been linked to a forward stratigraphic model, BARSIM (developed by Joep Storms, University of Delft), which simulates shallow-marine wave/storm-dominated systems over geological timescales. This link requires the construction of a likelihood function to quantify the agreement between simulated and observed data of different types (e.g. sediment age and thickness, grain size distributions). The technique has been tested and validated with synthetic data, in which all the parameters are specified to produce a ,perfect' simulation, although we add noise to these synthetic data for subsequent testing of the inverse modelling approach. These tests addressed convergence and computational-overhead issues, and highlight the robustness of the inverse scheme, which is able to assess the full range of uncertainties on the inferred environmental parameters and facies distributions. [source]