Invasive Populations (invasive + population)

Distribution by Scientific Domains


Selected Abstracts


Spatial and temporal variation in the morphology (and thus, predicted impact) of an invasive species in Australia

ECOGRAPHY, Issue 2 2006
Ben L. Phillips
The impact of an invasive species is unlikely to be uniform in space or time, due to variation in key traits of the invader (e.g. morphology, physiology, behaviour) as well as in resilience of the local ecosystem. The weak phylogeographic structure typical of an invasive population suggests that much of the variation in an invading taxon is likely to be generated by the environment and recent colonisation history. Here we describe effects of the environment and colonisation history on key morphological traits of an invader (the cane toad Bufo marinus). These "key traits" (body size and relative toxicity) mediate the impact of toads on Australian native predators, which often die as a consequence of ingesting a fatal dose of toad toxin. Measurements of museum specimens collected over >60 yr from a wide area show that seasonal variation in toad body size (due to seasonal recruitment) effectively swamps much of the spatial variance in this trait. However, relative toxicity of toads showed strong spatial variation and little seasonal variation. Thus, the risk to a native predator ingesting a toad will vary on both spatial and temporal scales. For native predators capable of eating a wide range of toad sizes (e.g. quolls, varanid lizards), seasonal variation in overall toad size will be the most significant predictor of risk. In contrast, gape-limited predators restricted to a specific range of toad sizes (such as snakes) will be most strongly affected by the relative toxicity of toads. Gape-limited predators will thus experience strong spatial variation in risk from toad consumption. [source]


Testing the role of genetic factors across multiple independent invasions of the shrub Scotch broom (Cytisus scoparius)

MOLECULAR ECOLOGY, Issue 22 2007
MING KANG
Abstract Knowledge of the introduction history of invasive plants informs on theories of invasiveness and assists in the invasives management. For the highly successful invasive shrub Scotch broom, Cytisus scoparius, we analysed a combination of nuclear and chloroplast microsatellites for eight native source regions and eight independent invasion events in four countries across three continents. We found that two exotic Australian populations came from different sources, one of which was derived from multiple native populations, as was an invasive sample from California. An invasive population from New Zealand appeared to be predominantly sourced from a single population, either from the native or exotic ranges. Four invasive populations from Chile were genetically differentiated from the native range samples analysed here and so their source of introduction could not be confirmed, but high levels of differentiation between the Chilean populations suggested a combination of different sources. This extensive global data set of replicated introductions also enabled tests of key theories of invasiveness in relation to genetic diversity. We conclude that invasive populations have similar levels of high genetic diversity to native ranges; levels of admixture may vary across invasive populations so admixture does not appear to have been an essential requirement for invasion; invasive and native populations exhibit similar level of genetic structure indicating similar gene flow dynamics for both types of populations. High levels of diversity and multiple source populations for invasive populations observed here discount founder effects or drift as likely explanations for previously observed seed size differences between ranges. The high levels of genetic diversity, differential and source admixture identified for most exotic populations are likely to limit the ability to source biocontrol agents from the native region of origin of invasive populations. [source]


BIODIVERSITY RESEARCH: Genetic diversity in two introduced biofouling amphipods (Ampithoe valida & Jassa marmorata) along the Pacific North American coast: investigation into molecular identification and cryptic diversity

DIVERSITY AND DISTRIBUTIONS, Issue 5 2010
Erik M. Pilgrim
Abstract Aim, We investigated patterns of genetic diversity among invasive populations of Ampithoe valida and Jassa marmorata from the Pacific North American coast to assess the accuracy of morphological identification and determine whether or not cryptic diversity and multiple introductions contribute to the contemporary distribution of these species in the region. Location, Native range: Atlantic North American coast; Invaded range: Pacific North American coast. Methods, We assessed indices of genetic diversity based on DNA sequence data from the mitochondrial cytochrome c oxidase subunit I (COI) gene, determined the distribution of COI haplotypes among populations in both the invasive and putative native ranges of A. valida and J. marmorata and reconstructed phylogenetic relationships among COI haplotypes using both maximum parsimony and Bayesian approaches. Results, Phylogenetic inference indicates that inaccurate species-level identifications by morphological criteria are common among Jassa specimens. In addition, our data reveal the presence of three well supported but previously unrecognized clades of A. valida among specimens in the north-eastern Pacific. Different species of Jassa and different genetic lineages of Ampithoe exhibit striking disparity in geographic distribution across the region as well as substantial differences in genetic diversity indices. Main conclusions, Molecular genetic methods greatly improve the accuracy and resolution of identifications for invasive benthic marine amphipods at the species level and below. Our data suggest that multiple cryptic introductions of Ampithoe have occurred in the north-eastern Pacific and highlight uncertainty regarding the origin and invasion histories of both Jassa and Ampithoe species. Additional morphological and genetic analyses are necessary to clarify the taxonomy and native biogeography of both amphipod genera. [source]


From introduction to the establishment of alien species: bioclimatic differences between presence and reproduction localities in the slider turtle

DIVERSITY AND DISTRIBUTIONS, Issue 1 2009
Gentile Francesco Ficetola
ABSTRACT Aim, Understanding the factors determining the transition from introduction of aliens to the establishment of invasive populations is a critical issue of the study of biological invasions, and has key implications for management. Differences in fitness among areas of introduction can define the zones where aliens become invasive. The American slider turtle Trachemys scripta has been introduced worldwide, and has negative effects on freshwater communities, but only a subset of introduced populations breed successfully. We used species distribution models to assess the factors influencing the slider distribution in Italy, by analysing bioclimatic features that can cause the transition from presence of feral adults to breeding populations. We also evaluated whether climate change might increase the future suitability for reproduction. Location,, Central and Northern Italy. Methods,, The distribution of slider turtle was obtained from the literature, unpublished reports and field surveys. We used Maxent to build bioclimatic models. Results,, Reproductive populations are associated to a clear bioclimatic envelope with warmer climate, more solar radiation and higher precipitations than populations where reproduction is not observed. Several Mediterranean areas currently have climatic features suitable for sliders. Scenarios of climate change predict the expansion of these areas. In the near future (2020), the proportion of populations in areas suitable for reproduction will dramatically increase. Main conclusion,, Our study shows that bioclimatic differences can determine the areas where aliens become invaders. Management should be focused to these source areas. However, climate change can increase fitness in the future, and therefore the interactions between climate change and fitness can boost the invasiveness of this alien species. [source]


Evolutionary origins of invasive populations

EVOLUTIONARY APPLICATIONS (ELECTRONIC), Issue 3 2008
Carol Eunmi Lee
Abstract What factors shape the evolution of invasive populations? Recent theoretical and empirical studies suggest that an evolutionary history of disturbance might be an important factor. This perspective presents hypotheses regarding the impact of disturbance on the evolution of invasive populations, based on a synthesis of the existing literature. Disturbance might select for life-history traits that are favorable for colonizing novel habitats, such as rapid population growth and persistence. Theoretical results suggest that disturbance in the form of fluctuating environments might select for organismal flexibility, or alternatively, the evolution of evolvability. Rapidly fluctuating environments might favor organismal flexibility, such as broad tolerance or plasticity. Alternatively, longer fluctuations or environmental stress might lead to the evolution of evolvability by acting on features of the mutation matrix. Once genetic variance is generated via mutations, temporally fluctuating selection across generations might promote the accumulation and maintenance of genetic variation. Deeper insights into how disturbance in native habitats affects evolutionary and physiological responses of populations would give us greater capacity to predict the populations that are most likely to tolerate or adapt to novel environments during habitat invasions. Moreover, we would gain fundamental insights into the evolutionary origins of invasive populations. [source]


Resource allocation to defence and growth are driven by different responses to generalist and specialist herbivory in an invasive plant

JOURNAL OF ECOLOGY, Issue 5 2010
Wei Huang
Summary 1.,Invasive plants often have novel biotic interactions in their introduced ranges. These interactions, including less frequent herbivore attacks, may convey a competitive advantage over native plants. Invasive plants may vary in defence strategies (resistance vs. tolerance) or in response to the type of herbivore (generalists vs. specialists), but no study to date has examined this broad set of traits simultaneously. 2.,Here, we examined resistance and tolerance of Chinese tallow (Triadica sebifera) populations from the introduced and native ranges to generalist (Cnidocampa flavescens) and specialist herbivores (Gadirtha inexacta) in the native range. 3.,In a field common-garden test of resistance, caterpillars of each species were raised on plants from native and invasive populations. We found the specialist grew larger on and consumed more mass of invasive plant populations than native populations, while the generalist showed the same performance between them. The results were consistent with our laboratory bioassay using excised leaves. Chemical analyses showed that the invasive plants had lower tannin content and higher ratio of carbohydrate to protein than those of their native counterparts, suggesting that plants from invasive populations have altered chemistry that has a larger impact on specialist than on generalist resistance. 4.,To test for differences in herbivore tolerance, plants were first defoliated by specialist or generalist herbivory and then allowed to regrow for 100 days in a field common garden. We found that plants from invasive populations had greater herbivore tolerance than native populations, especially for tolerance to generalists. They also grew more rapidly than native counterparts in the absence of herbivory. 5.,Synthesis. The results of these experiments indicate that differences in selective pressures between ranges have caused dramatic reductions in resistance to specialist herbivores and those changes in plant secondary chemistry likely underlie these differences. The greater tolerance of invasive populations to herbivory appears to at least partly reflect an increase in growth rate in the introduced range. The greater tolerance to generalist herbivores suggests the intriguing possibility of selection for traits that allow plants to tolerate generalist herbivores more than specialist herbivores. [source]


Comparison of quantitative and molecular genetic variation of native vs. invasive populations of purple loosestrife (Lythrum salicaria L., Lythraceae)

MOLECULAR ECOLOGY, Issue 14 2009
YOUNG JIN CHUN
Abstract Study of adaptive evolutionary changes in populations of invasive species can be advanced through the joint application of quantitative and population genetic methods. Using purple loosestrife as a model system, we investigated the relative roles of natural selection, genetic drift and gene flow in the invasive process by contrasting phenotypical and neutral genetic differentiation among native European and invasive North American populations (QST , FST analysis). Our results indicate that invasive and native populations harbour comparable levels of amplified fragment length polymorphism variation, a pattern consistent with multiple independent introductions from a diverse European gene pool. However, it was observed that the genetic variation reduced during subsequent invasion, perhaps by founder effects and genetic drift. Comparison of genetically based quantitative trait differentiation (QST) with its expectation under neutrality (FST) revealed no evidence of disruptive selection (QST > FST) or stabilizing selection (QST < FST). One exception was found for only one trait (the number of stems) showing significant sign of stabilizing selection across all populations. This suggests that there are difficulties in distinguishing the effects of nonadaptive population processes and natural selection. Multiple introductions of purple loosestrife may have created a genetic mixture from diverse source populations and increased population genetic diversity, but its link to the adaptive differentiation of invasive North American populations needs further research. [source]


Testing the role of genetic factors across multiple independent invasions of the shrub Scotch broom (Cytisus scoparius)

MOLECULAR ECOLOGY, Issue 22 2007
MING KANG
Abstract Knowledge of the introduction history of invasive plants informs on theories of invasiveness and assists in the invasives management. For the highly successful invasive shrub Scotch broom, Cytisus scoparius, we analysed a combination of nuclear and chloroplast microsatellites for eight native source regions and eight independent invasion events in four countries across three continents. We found that two exotic Australian populations came from different sources, one of which was derived from multiple native populations, as was an invasive sample from California. An invasive population from New Zealand appeared to be predominantly sourced from a single population, either from the native or exotic ranges. Four invasive populations from Chile were genetically differentiated from the native range samples analysed here and so their source of introduction could not be confirmed, but high levels of differentiation between the Chilean populations suggested a combination of different sources. This extensive global data set of replicated introductions also enabled tests of key theories of invasiveness in relation to genetic diversity. We conclude that invasive populations have similar levels of high genetic diversity to native ranges; levels of admixture may vary across invasive populations so admixture does not appear to have been an essential requirement for invasion; invasive and native populations exhibit similar level of genetic structure indicating similar gene flow dynamics for both types of populations. High levels of diversity and multiple source populations for invasive populations observed here discount founder effects or drift as likely explanations for previously observed seed size differences between ranges. The high levels of genetic diversity, differential and source admixture identified for most exotic populations are likely to limit the ability to source biocontrol agents from the native region of origin of invasive populations. [source]


Differential admixture shapes morphological variation among invasive populations of the lizard Anolis sagrei

MOLECULAR ECOLOGY, Issue 8 2007
JASON J. KOLBE
Abstract The biological invasion of the lizard Anolis sagrei provides an opportunity to study evolutionary mechanisms that produce morphological differentiation among non-native populations. Because the A. sagrei invasion represents multiple native-range source populations, differential admixture as well as random genetic drift and natural selection, could shape morphological evolution during the invasion. Mitochondrial DNA (mtDNA) analyses reveal seven distinct native-range source populations for 10 introduced A. sagrei populations from Florida, Louisiana and Texas (USA), and Grand Cayman, with 2,5 native-range sources contributing to each non-native population. These introduced populations differ significantly in frequencies of haplotypes from different native-range sources and in body size, toepad-lamella number, and body shape. Variation among introduced populations for both lamella number and body shape is explained by differential admixture of various source populations; mean morphological values of introduced populations are correlated with the relative genetic contributions from different native-range source populations. The number of source populations contributing to an introduced population correlates with body size, which appears independent of the relative contributions of particular source populations. Thus, differential admixture of various native-range source populations explains morphological differences among introduced A. sagrei populations. Morphological differentiation among populations is compatible with the hypothesis of selective neutrality, although we are unable to test the hypothesis of interdemic selection among introductions from different native-range source populations. [source]


Molecular ecology of zebra mussel invasions

MOLECULAR ECOLOGY, Issue 4 2006
GEMMA E. MAY
Abstract The invasion of the zebra mussel, Dreissena polymorpha, into North American waters has resulted in profound ecological disturbances and large monetary losses. This study examined the invasion history and patterns of genetic diversity among endemic and invading populations of zebra mussels using DNA sequences from the mitochondrial cytochrome oxidase I (COI) gene. Patterns of haplotype frequency indicate that all invasive populations of zebra mussels from North America and Europe originated from the Ponto-Caspian Sea region. The distribution of haplotypes was consistent with invasive populations arising from the Black Sea drainage, but could not exclude the possibility of an origin from the Caspian Sea drainage. Similar haplotype frequencies among North American populations of D. polymorpha suggest colonization by a single founding population. There was no evidence of invasive populations arising from tectonic lakes in Turkey, while lakes in Greece and Macedonia contained only Dreissena stankovici. Populations in Turkey might be members of a sibling species complex of D. polymorpha. Ponto-Caspian derived populations of D. polymorpha (, = 0.0011) and Dreissena bugensis (one haplotype) exhibited low levels of genetic diversity at the COI gene, perhaps as a result of repeated population bottlenecks. In contrast, geographically isolated tectonic lake populations exhibited relatively high levels of genetic diversity (, = 0.0032 to 0.0134). It is possible that the fluctuating environment of the Ponto-Caspian basin facilitated the colonizing habit of invasive populations of D. polymorpha and D. bugensis. Our findings were concordant with the general trend of destructive freshwater invaders in the Great Lakes arising from the Ponto-Caspian Sea basin. [source]


Microsatellite variation within and among North American lineages of Phragmites australis

MOLECULAR ECOLOGY, Issue 7 2003
K. Saltonstall
Abstract Over the past century, the spread of the common reed (Phragmites australis) has had a dramatic impact on wetland communities across North America. Although native populations of Phragmites persist, introduced invasive populations have dominated many sites and it is not clear if the two types can interbreed. This study compares patterns of differentiation in 10 microsatellite loci among North American and European Phragmites individuals with results obtained from sequencing of noncoding chloroplast DNA. Three population lineages (native, introduced and Gulf Coast) were previously identified in North America from chloroplast DNA and similar structuring was found in the nuclear genome. Each lineage was distinguished by unique alleles and allele combinations and the introduced lineage was closely related to its hypothesized source population in Europe. Size homoplasy and diagnostic base substitutions distinguishing lineages were evident at several loci, further emphasizing that native, introduced and Gulf Coast North American Phragmites lineages are genetically distinct. Gene flow between lineages was low and invasive introduced populations do not represent a hybrid population type. [source]


Characterization of microsatellite loci in Spartina species (Poaceae)

MOLECULAR ECOLOGY RESOURCES, Issue 1 2004
Michael J. Blum
Abstract The cordgrasses in the genus Spartina have become model organisms for studying biological invasions from both ecological and genetic perspectives. Here we characterize 11 disomic loci in Spartina alterniflora that show promise for population studies and for studying hybridization events between S. alterniflora and S. foliosa. Comparisons among invasive and native S. alterniflora populations showed that levels of allelic variation are lower in invasive populations. In addition, nearly all loci that amplified in S. foliosa populations and in a swarm of S. alterniflora×foliosa hybrids were polymorphic. We also found that several loci amplified successfully in other Spartina species. [source]


Molecular data reveals California as the potential source of an invasive leafhopper species, Macrosteles sp. nr. severini, transmitting the aster yellows phytoplasma in Hawaii

ANNALS OF APPLIED BIOLOGY, Issue 3 2009
J.J. Le Roux
Abstract A species of aster leafhopper (Macrosteles sp.) became established in 2001 on Oahu, Hawaii, and through the transmission of the aster yellows phytoplasma, caused devastating losses to the island's watercress industry. DNA sequence data were analysed from two mitochondrial genes [cytochrome oxidase subunit 1(CO1) and nicotinamide adenine dinucleotide 1 (NADH1)] and one nuclear gene (wingless, Wg) (combined total of 1874 bp) to reconstruct phylogenetic relationships between putative US mainland source populations of aster leafhoppers and those introduced to Hawaii. These data were applied to elucidate the origin(s) and identity of Hawaiian infestations and the amount of genetic diversity within introduced invasive populations. Both phylogenetic search criteria (Bayesian and maximum likelihood models) converged onto similar tree topologies for all three gene regions and suggested that Hawaii infestations represent a single undescribed leafhopper species unrelated to the common aster leafhopper, Macrosteles quadrilineatus. An exact haplotype match was found from a specimen intercepted from watercress shipped to Hawaii from Los Angeles, California, suggesting this region as the potential source for Hawaiian infestations. Two mitochondrial haplotypes were identified in Hawaii suggesting two or perhaps just a single introduction of more than one female. [source]