Invasive Plant Management (invasive + plant_management)

Distribution by Scientific Domains


Selected Abstracts


The role of fruit traits of bird-dispersed plants in invasiveness and weed risk assessment

DIVERSITY AND DISTRIBUTIONS, Issue 6 2009
Carl R. Gosper
Abstract Aim, Birds play a major role in the dispersal of seeds of many fleshy-fruited invasive plants. The fruits that birds choose to consume are influenced by fruit traits. However, little is known of how the traits of invasive plant fruits contribute to invasiveness or to their use by frugivores. We aim to gain a greater understanding of these relationships to improve invasive plant management. Location, South-east Queensland, Australia. Methods, We measure a variety of fruit morphology, pulp nutrient and phenology traits of a suite of bird-dispersed alien plants. Frugivore richness of these aliens was derived from the literature. Using regressions and multivariate methods, we investigate relationships between fruit traits, frugivore richness and invasiveness. Results, Plant invasiveness was negatively correlated to fruit size, and all highly invasive species had quite similar fruit morphology [smaller fruits, seeds of intermediate size and few (< 10) seeds per fruit]. Lower pulp water was the only pulp nutrient trait associated with invasiveness. There were strong positive relationships between the diversity of bird frugivores and plant invasiveness, and in the diversity of bird frugivores in the study region and another part of the plants' alien range. Main conclusions, Our results suggest that weed risk assessments (WRA) and predictions of invasive success for bird-dispersed plants can be improved. Scoring criteria for WRA regarding fruit size would need to be system-specific, depending on the fruit-processing capabilities of local frugivores. Frugivore richness could be quantified in the plant's natural range, its invasive range elsewhere, or predictions made based on functionally similar fruits. [source]


General guidelines for invasive plant management based on comparative demography of invasive and native plant populations

JOURNAL OF APPLIED ECOLOGY, Issue 4 2008
Satu Ramula
Summary 1General guidelines for invasive plant management are currently lacking. Population declines may be achieved by focusing control on demographic processes (survival, growth, fecundity) with the greatest impact on population growth rate. However, we often have little demographic information on populations in the early stages of an invasion when control can be most effective. Here we determine whether synthesis of existing demographic data on invasive and native plant populations can address this knowledge problem. 2We compared population dynamics between invasive and native species using published matrix population models for 21 invasive and 179 native plant species. We examined whether the population growth rate responsiveness to survival, growth and fecundity perturbations varied between invasive and native species, and determined which demographic processes of invaders to target for reductions in population growth rate. 3Invaders had higher population growth rates (,) than natives, resulting in differences in demographic processes. Perturbations of growth and fecundity transitions (elasticities) were more important for population growth of invaders, whereas perturbations of survival had greater importance for population growth of natives. 4For both invasive and native species, elasticities of , to survival increased with life span and decreased with ,; while elasticities to growth and fecundity decreased with life span and increased with ,. 5For long-lived invaders, simulated reductions in either survival, growth or fecundity transitions were generally insufficient to produce population declines, whereas multiple reductions in either survival + growth or survival + fecundity were more effective. For short-lived invaders, simulated reductions in growth or fecundity and all pairwise multiple reductions produced population declines. 6Synthesis and applications. Life history and population growth rate of invasive species are important in the selection of control targets. For rapidly growing populations of short-lived invaders, growth and fecundity transitions should be prioritized as control targets over survival transitions. For long-lived invaders, simultaneous reductions in more than one demographic process, preferably survival and growth, are usually required to ensure population decline. These general guidelines can be applied to rapidly growing new plant invasions and at the invasion front where detailed demographic data on invasive species are lacking. [source]


Approaches for testing herbivore effects on plant population dynamics

JOURNAL OF APPLIED ECOLOGY, Issue 5 2006
STACEY L. HALPERN
Summary 1As plant invasions pose one of the greatest threats to biodiversity, it is critical to improve both our understanding of invasiveness and strategies for control. Much research into plant invasions and their management, including biological control, assumes strong demographic effects by natural enemies, including herbivores. However, the importance of natural enemies in the regulation of plant populations remains controversial: some ecologists contend that they rarely affect plant populations, and others that they can strongly limit plant population sizes. 2We briefly review the conflicting views and suggest that new approaches to gather and analyse data are needed before the effects of natural enemies on plant populations can be fully characterized. 3We outline experimental and analytical approaches that incorporate density dependence into population models and thus provide a more complete test of the long-term effects of natural enemies on plant populations. We also introduce new methods for obtaining stochastic estimates of equilibrium density, which will provide a key test of enemy effects on plant population size. 4Synthesis and applications. Designing effective strategies for invasive plant management requires information about the factors that limit plant population size. Together, the experiments and analyses we describe measure more clearly how natural enemies influence plant population dynamics. They will provide an important tool in evaluating the role of enemy release in plant invasions and for predicting the potential success of biological control. Such information should help to prioritize strategies that are most likely to control invasive plants effectively and will contribute to risk assessment when considering the release of non-native natural enemies as biological control agents. [source]