Home About us Contact | |||
Intrusive Rocks (intrusive + rock)
Selected AbstractsSulfur Isotope Study of Precambrian Basement and Mesozoic Intrusive Rocks in the Southwestern Part of Ryeongnam Massif, KoreaRESOURCE GEOLOGY, Issue 1 2003Chung-Han Yoon Abstract. Isotope composition of whole rock sulfur has been measured on 14 schists, 10 gneisses, 7 gabbroids, 7 granitoids and 2 sedimentary rocks, with of 9 sulfide (pyrite) sulfurs in gabbros and granitoids, from the southwestern part of the Ryeongnam Massif, Korea. The ,34S values of schists range from -4.6 to +6.1 % (average +0.9 %), those of gneisses from -4.0 to +0.8 % (-1.9%), those of gabbroids from -2.3 to +3.7 % (+1.0 %), and those of granitoids from -5.9 to +3.2 % (-1.9 %). The ,34S values of pyrite separated from gabbros and granitoids show rather heavier values ranging from +3.1 to +9.4 % with an average of+5.8%. Though the ,34S values of whole rock sulfur give wide range of -5.9 to +6.1 %, the average of about -0.5 % is close to the mantle value. The granitoids sampled at the central parts of intrusive bodies or at the contacts with other plutonic rocks tend to show positive values, while those sampled near the boundary with basement rocks such as granitic gneiss and por-phyroblastic gneiss show negative values. Though the reason of this tendency is not clear at present, the ,34S values of some granitoids in this area seem to represent possible influence by the assimilation of country rocks, particularly of gneisses. Average isotopic compositions of ore sulfur from individual metal deposits in the studied area are summarized to have a range of+1.0 to +7.8 % with an average value of+3.2 %. The values are consistent with the previous finding that the ore sulfur isotopic values of the Ryeongnam Massif are the lowest among the four tectonic belts in Korea; Gyeonggi Massif, Ogcheon Belt, Ryeongnam Massif, and Gyeongsang Basin. This feature may reflect the isotopic compositions of plutonic rocks and basements in this area, which are characterized by relatively low values around zero permil. [source] Transition from arc- to post-collision extensional setting revealed by K,Ar dating and petrology: an example from the granitoids of the Eastern Pontide Igneous Terrane, Arakl,-Trabzon, NE TurkeyGEOLOGICAL JOURNAL, Issue 4 2005Sabah Yilmaz- Abstract The Eastern Pontide Igneous Terrane (EPIT) includes several Cretaceous to Neogene intrusive rocks, ranging in composition from low-K tholeiitic gabbros through calc-alkaline and high-K calc-alkaline metaluminous granitoids or peraluminous leucogranites to alkaline syenites. Such high diversity in age and composition is also accompanied by a broad spectrum in terms of geodynamics,i.e. from arc through syn-collisional thickening to post-collisional extensional regimes. Shallow-seated porphyritic acidic to intermediate rocks are from oldest to youngest, on the basis of field relations, the Gündo,du altered microgranite, the Bo,al, K-feldspar-megacrystic monzogranite and the Uzuntarla porphyritic granodiorite. These rocks, exposed in the southern part of the Arakl, region, east of Trabzon, Turkey, were studied in terms of their mineralogy and petrography, whole-rock geochemistry and hornblende K,Ar dating. The mineralogical and geochemical data reveal an apparent diversity in incompatible-element enrichment and depletion, for the Bo,al, unit and Uzuntarla unit, respectively. The Bo,al, and Uzuntarla units yield hornblende K,Ar ages ranging from 75.7,±,1.55 to 61.4,±,1.47,Ma and from 42.4,±,0.87 to 41.2,±,0.89,Ma, respectively. The diversity in both mineralogy,geochemistry and hornblende K,Ar ages suggests that the Bo,al, and Uzuntarla units are parts of the Cretaceous arc and Eocene post-collision extensional-related igneous activity, respectively, in the EPIT of northern Turkey. Copyright © 2005 John Wiley & Sons, Ltd. [source] Late Mesoproterozoic (ca 1.2 Ga) palaeomagnetism of the Albany,Fraser orogen: no pre-Rodinia Australia,Laurentia connectionGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2003S. A. Pisarevsky SUMMARY New palaeomagnetic data from metamorphic and mafic intrusive rocks of the Albany,Fraser orogen place Australia at high latitudes at ca 1.2 Ga, whereas existing data show that Laurentia occupied low latitudes at this time. No previous reconstructions linking Australia and Laurentia at ca 1.2 Ga are supported by our new data. The two continents moved independently during the early Grenville orogeny, although it is possible that late Mesoproterozoic convergence resulted in an AUSMEX configuration by 1070 Ma. [source] Tectonic accretion of a subducted intraoceanic remnant arc in Cretaceous Hokkaido, Japan, and implications for evolution of the Pacific northwestISLAND ARC, Issue 4 2005Hayato Ueda Abstract An accretionary complex, which contains fragments of a remnant island arc, was newly recognized in the Cretaceous accretionary terranes in Hokkaido, Japan. It consists of volcanics, volcanic conglomerate, intermediate to ultramafic intrusive rocks with island-arc affinity including boninitic rocks, accompanied by chert and deformed terrigenous turbidites. Compared with the results of modern oceanic surveys, the preserved sequence from island-arc volcanics to chert, via reworked volcanics, is indicative of intraoceanic remnant arc, because the sequence suggests an inactive arc isolated within a pelagic environment before its accretion. The age of a subducting oceanic crust can be discontinuous before and after a remnant-arc subduction, resulting in abrupt changes in accretion style and metamorphism, as seen in Cretaceous Hokkaido. Subduction of such an intraoceanic remnant arc suggests that the subducted oceanic plate in the Cretaceous was not an extensive oceanic plate like the Izanagi and/or Kula Plates as previously believed by many authors, but a marginal basin plate having an arc,back-arc system like the present-day Philippine Sea Plate. [source] Porphyry-Type Mineralization at Selogiri Area, Wonogiri Regency, Central Java, IndonesiaRESOURCE GEOLOGY, Issue 2 2007Akira Imai Abstract The Selogiri area, situated in Wonogiri regency, Central Java, is one of several gold prospecting areas in the Southern areas Mountain Range in Java, Indonesia. Three types of dioritic,andesitic intrusive rocks occur in the Selogiri area, namely, hornblende andesite porphyry, hornblende diorite porphyry and hornblende diorite, exposed in a half-circular depression where volcanic breccia and tuff are widely distributed. The occurrence of stockwork quartz veinlets and associated with magnetite and malachite coating along the cracks in the diorite porphyry suggests porphyry type mineralization. This is also supported by the occurrence of polyphase hypersaline fluid inclusions in the stockwork veinlet quartz. Small-scale miners are mining NS-trending quartz veins for gold associated with base metal sulfides. These veins are probably epithermal-type mineralization that overprinted porphyry-type mineralization. The Neogene intermediate to silicic hydrous magmatism in Java could have formed the porphyry-type mineralization in Selogiri, as in the rest of the Sunda,Banda arc. [source] The Cornubian Batholith: an Example of Magmatic Fractionation on a Crustal ScaleRESOURCE GEOLOGY, Issue 3 2006Bruce W. Chappell Abstract. The Cornubian Batholith comprises six major and several smaller bodies of S-type granite in southwestern England. These late-Variscan granites comprise two-mica granites, and much less abundant Li-mica granites that are restricted to one of the major bodies (St Austell) and smaller bodies. Some of these intrusive rocks are associated with major Sn mineralization. This paper is concerned with the geochemistry of the two-mica granites, which are felsic, strongly peraluminous, and have a high total alkali content and low Na:K. Rocks with very similar compositions to these granites occur elsewhere, including the Variscan granites of continental Europe, and in southeastern Australia. In detail all of the major plutons of this batholith have distinctive compositions, except for Bodmin Moor and Carnmenellis which cannot be discriminated from each other compositionally. A comparison with experimental data shows that the granites attained their major element composition under conditions of crystal-liquid equilibrium, with the final melt being saturated in H2O, at temperatures close to 770d,C and pressures about 50 MPa. That temperature estimate is in good agreement with values obtained from zircon saturation thermometry. The specific minimum-temperature composition excludes the possibility of widespread transfer of elements during hydrothermal alteration. Minor elements that are relatively very abundant are Li, B, Cs and U, while F, Ga, Ge, Rb, Sn, Ta, W and Tl are quite abundant and P is high for felsic rocks. Sr, Ba, and the trace transition metals Sc to Zn, are low, but not as low as they commonly are in very felsic granites. These trace element abundances, and the EL2O-saturation, resulted from the fractional crystallization of a melt derived by the partial melting of feldspathic greywackes in the crust. The Cornubian granites have compositions very similar to the more felsic rocks of the Koetong Suite of southeastern Australia, where a full range of granites formed at the various stages of magmatic fractionation postulated for the Cornubian granites, can be observed. The operation of fractional crystallization in the Cornubian granites is confirmed by the high P abundances in the feldspars, with P contents of the plagioclase crystals correlating with Ab-con-tent Most of the granites represent solidified melt compositions but within the Dartmoor pluton there is a significant component of granites that are cumulative, shown by their higher Ca contents. The Cornubian plutons define areas of high heat flow, of a magnitude which requires that fractionated magmas were transported laterally from their sources and concentrated in the exposed plutons. The generation of these granite plutons therefore involved magmatic fractionation during the stages of partial melting, removal of unmelted material from that melt, and fractional crystallization. During the later stages of those processes, movement of those magmas occurred on a crustal scale. [source] Carlin-type Gold Prospects in Surigao del Norte, Mindanao Island, Philippines: Their Geology and Mineralization PotentialRESOURCE GEOLOGY, Issue 3 2005Victor B. Maglambayan Abstract. Three calcareous sedimentary rock-hosted Carlin type-like gold prospects were mapped in a mineral production sharing agreement area of Philex Gold Philippines Inc. in Taganaan municipality, Surigao del Norte province in Mindanao island in the Philippines. They occur along a 20,25 km long trend of known epigenetic gold and porphyry copper deposits that lie close to several splays of the Philippine Fault Zone. The gold district forms part of the Late Cretaceous Eastern Mindanao Range that hosts early Paleogene and late Pliocene to Quaternary intrusive rocks. Gold is invisible in the jasperoid outcrops in Lascogon, Napo, and Danao prospects. The jasperoids occur in lenses of marls belonging to the Taganaan Marl Member that is associated to a turbiditic member of the Middle Miocene Mabuhay Formation. The marl lenses include gently dipping interbedded silty limestones and calcareous shales. The "invisible gold" mineralization in silicified calcareous rocks resembles Carlin-type deposits. Based on the mapped igneous and sedimentary rocks, a possible heat source for the gold mineralization is either or both of the two main phases of intrusion, Mabuhay An-desite or Alipao Andesite Porphyry. Forty-eight rock samples, fifteen stream sediment samples, and one soil sample were critical in delineating the general features of the potential Carlin-type prospects. The gold grades of jasperoids in the three prospects range from trace amounts to 20 g/t Au. Regional studies of gold and porphyry copper mineralization in the Surigao del Norte mineral district are important in delineating ore targets for drilling in the three prospects. [source] Thrusting and Exhumation Processes of a Bounding Mountain Belt: Constraints from Sediment Provenance Analysis of the Hefei BasinACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 2 2001LIU Shaofeng Abstract Lithic (or gravel) composition analyses of the Jurassic Sanjianpu Formation and Fenghuangtai Formation in the Hefei basin show that the sediment provenance consists mainly of four kinds of rock units: the basement metamorphic complex, granitic rocks, medium- and low-grade metamorphic rocks, and sandy and muddy sedimentary rocks, which are distributed along the bounding thrust belt. The whole stratigraphic section can be divided into 2 lithic sequences and 7 subsequences. The regular distribution and changes of lithic fragments and gravels in lithic (or gravel) sequences reflect that the bounding thrust belt of basin has undergone 2 thrusting cycles and 7 thrusting events. Lithic (or gravel) composition analyses of the basin fully reveal that the northern Dabie basement metamorphic complex was exhumed on the earth's surface in the Middle and Late Jurassic, and extensive intermediate and acid intrusive rocks were developed in the southern North Huaiyang or northern Dabie Mountains during the basin's syndepositional stage. [source] Basement Characteristics and Crustal Evolution of the Copper-Gold Metallogenic Belt in the Middle and Lower Reaches of the Yangtze River: Some Isotope ConstraintsACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 2 2000ZHOU Taofa Abstract Studies of the Pb, Sr and Nd isotopic composition of Mesozoic intrusive rocks indicate that the basement of the copper-gold metallogenic belt of the middle and lower reaches of the Yangtze River has "two-layer structure" and partly has "multi-layered structure", and is inhomogeneous and shows the distinct feature of E-W provincialism. The calculated model lead ages (t1) are mostly greater than 2600 Ma, and the model neodymium ages (TDM) vary from 953 to 2276 Ma and concentrate in two time intervals: 1800,2000 Ma and 1200,1600 Ma. It is concluded that the basement of the MBYR is composed of the Late Archaeozoic to Middle Proterozoic metamorphic series and that the crust was initiated in the Archaean and continued to grow in the Early and Middle Proterozoic, and the proportion of new crust formed by mantle differentiation during the Late Proterozoic is low. [source] |