Intronic Polymorphisms (intronic + polymorphism)

Distribution by Scientific Domains


Selected Abstracts


Argininosuccinate lyase deficiency: mutational spectrum in Italian patients and identification of a novel ASL pseudogene,

HUMAN MUTATION, Issue 7 2007
Eva Trevisson
Abstract Argininosuccinic aciduria (ASAuria) is an inborn error of metabolism caused by mutations in the argininosuccinate lyase (ASL) gene, which leads to the accumulation of argininosuccinic acid (ASA) in body fluids and severe hyperammonemia. A severe neonatal form and a milder late-onset variant are described. We report a novel ASL pseudogene located in the centromeric region of chromosome 7, 14 novel mutations in the ASL gene, and a novel intronic polymorphism found in a cohort of Italian patients. Our approach relied exclusively on genomic DNA analysis. We found seven missense mutations, two nonsense, three small insertions/deletions, and two splicing mutations. Only two patients harbored previously described mutations, and among the novel variants only two were present in more than one kindred. The pathogenicity of the splicing mutations was demonstrated by a functional splicing assay that employed a hybrid minigene. We also performed molecular modeling using the reported three-dimensional structure of ASL to predict the functional consequences of the missense mutations. There was no genotype,phenotype correlation. Patients with neonatal onset display developmental delay and seizures despite adequate metabolic control. Moreover, hepatomegaly, fibrosis, and abnormal liver function tests are common complications in these patients, but not in patients with the late infancy form. We stress the importance of mutation analysis in patients with ASAuria, to confirm the clinical diagnosis, and to perform DNA-based prenatal diagnosis in future pregnancies of these families. Hum Mutat 28(7), 694,702, 2007. © 2007 Wiley-Liss, Inc. [source]


Genetic, immunologic, and immunohistochemical analysis of the programmed death 1/programmed death ligand 1 pathway in human systemic lupus erythematosus

ARTHRITIS & RHEUMATISM, Issue 1 2009
George K. Bertsias
Objective A putative regulatory intronic polymorphism (PD1.3) in the programmed death 1 (PD-1) gene, a negative regulator of T cells involved in peripheral tolerance, is associated with increased risk for systemic lupus erythematosus (SLE). We undertook this study to determine the expression and function of PD-1 in SLE patients. Methods We genotyped 289 SLE patients and 256 matched healthy controls for PD1.3 by polymerase chain reaction,restriction fragment length polymorphism analysis. Expression of PD-1 and its ligand, PDL-1, was determined in peripheral blood lymphocytes and in renal biopsy samples by flow cytometry and immunohistochemistry. A crosslinker of PD-1 was used to assess its effects on anti-CD3/anti-CD28,induced T cell proliferation and cytokine production. Results SLE patients had an increased frequency of the PD1.3 polymorphism (30.1%, versus 18.4% in controls; P = 0.006), with the risk A allele conferring decreased transcriptional activity in transfected Jurkat cells. Patients homozygous for PD1.3,but not patients heterozygous for PD1.3,had reduced basal and induced PD-1 expression on activated CD4+ T cells. In autologous mixed lymphocyte reactions (AMLRs), SLE patients had defective PD-1 induction on activated CD4+ cells; abnormalities were more pronounced among homozygotes. PD-1 was detected within the glomeruli and renal tubules of lupus nephritis patients, while PDL-1 was expressed by the renal tubules of both patients and controls. PD-1 crosslinking suppressed proliferation and cytokine production in both normal and lupus T cells; addition of serum from patients with active SLE significantly ameliorated this effect on proliferation. Conclusion SLE patients display aberrant expression and function of PD-1 attributed to both direct and indirect effects. The expression of PD-1/PDL-1 in renal tissue and during AMLRs suggests an important role in regulating peripheral T cell tolerance. [source]


LRRK2 and Parkinson's disease in Norway

ACTA NEUROLOGICA SCANDINAVICA, Issue 2007
M. Toft
Objectives, Mutations in the LRRK2 gene have been associated with both familial and sporadic late-onset Parkinson's disease. A large number of mutations in this gene have been identified; however, for many of these variants, the pathogenicity and relative frequency are unknown. Herein, we investigate the frequency of a number of recently identified LRRK2 mutations in Norway. Methods, We genotyped eight putatively pathogenic LRRK2 mutations (R793M, R1067Q, I1371V, IVS31+3 A>G, M1869T, R1941H, T2356I and G2385R) in a series of 433 patients with Parkinson's disease and 587 controls from Norway. An intronic polymorphism previously reported to be associated with disease susceptibility was also examined (rs10506151). Results, The Lrrk2 R793M substitution was found in two healthy individuals. No other LRRK2 mutations were identified in the Norwegian population, and furthermore no association was observed between rs10506151 and Parkinson's disease (P = 0.41). Conclusions,LRRK2 mutations other than the Lrrk2 G2019S mutation are rare in Norway. Our results indicate that the Lrrk2 R793M substitution is most likely a rare polymorphism. [source]


Genetic study of the myelin oligodendrocyte glycoprotein (MOG) gene in schizophrenia

GENES, BRAIN AND BEHAVIOR, Issue 1 2005
G. Zai
Schizophrenia (SCZ) is a neuropsychiatric disorder that affects approximately 1% of the general population. The human leukocyte antigen (HLA) system has been implicated in several genetic studies of SCZ. The myelin oligodendrocyte glycoprotein (MOG) gene, which is located close to the HLA region, is considered a candidate for SCZ due to its association with white matter abnormalities and its importance in mediating the complement cascade. Four polymorphisms in the MOG gene (CA)n (TAAA)n, and two intronic polymorphisms, C1334T and C10991T, were investigated for the possibility of association with SCZ using 111 SCZ proband and their families. We examined the transmission of the alleles of each of these polymorphisms with the transmission disequilibrium test. We did not observe significant evidence for biased transmission of alleles at the (CA)n (,2 = 2.430, 6 df, P = 0.876) (TAAA)n (,2 = 3.550, 5 df, P = 0.616), C1334T (,2 = 0.040, 1 df, P = 0.841) and C10991T (,2 = 0.154, 1 df, P = 0.695) polymorphisms. Overall haplotype analysis using the TRANSMIT program was also not significant (,2 = 7.954, 9 df, P = 0.539). Furthermore, our results comparing mean age at onset in the genotype groups using the Kruskal,Wallis Test were not significant. Our case-control analyses (182 cases age-, sex- and ethnicity-matched with healthy controls) and combined z -score [(CA)n: z -score =,1.126, P = 0.130; (TAAA)n: z -score = ,0.233, P = 0.408; C1334T: z -score = 0.703, P = 0.241; C10991T: z -score = 0.551, P = 0.291] were also not significant. Although our data are negative, the intriguing hypothesis for MOG in SCZ may warrant further investigation of this gene. [source]


Genetic variants in the noncoding region of RPS19 gene in Diamond-Blackfan anemia: Potential implications for phenotypic heterogeneity,

AMERICAN JOURNAL OF HEMATOLOGY, Issue 2 2010
Aurore Crétien
Mutations in the RPS19 gene have been identified in 25% of individuals affected by Diamond-Blackfan anemia (DBA), a congenital erythroblastopenia characterized by an aregenerative anemia and a variety of malformations. More than 60 mutations in the five coding exons of RPS19 have been described to date. We previously reported a mutation (c.-1 + 26G>T) and an insertion at ,631 upstream of ATG (c.-147_-146insGCCA) in the noncoding region. Because DBA phenotype is extremely heterogeneous from silent to severe and because haploinsufficiency seems to play a role in this process, it is likely that genetic variations in the noncoding regions affecting translation of RPS19 can modulate the phenotypic expression of DBA. However, to date, very few studies have addressed this question comprehensively. In this study, we performed detailed sequence analysis of the RPS19 gene in 239 patients with DBA and 110 of their relatives. We found that 6.2% of the patients with DBA carried allelic variations upstream of ATG: 3.3% with c.-1 + 26G>T; 2.5% with c.-147_-146insGCCA; and 0.4% with c.-174G>A. Interestingly, the c.-147_-146insGCCA, which has been found in a black American and French Caribbean control population, was not found in 500 Caucasian control chromosomes we studied. However, it was found in association with the same haplotype distribution of four intronic polymorphisms in our patients with DBA. Although a polymorphism, the frequency of this variant in the patients with DBA and its association with the same haplotype raises the possibility that this polymorphism and the other genetic variations in the noncoding region could play a role in DBA pathogenesis. Am. J. Hematol., 2010. © 2009 Wiley-Liss, Inc. [source]


Genetic variation of the human glycine receptor subunit genes GLRA3 and GLRB and susceptibility to idiopathic generalized epilepsies

AMERICAN JOURNAL OF MEDICAL GENETICS, Issue 6 2001
Diana Sobetzko
Abstract Alterations of glycine receptor ,1 and , subunit genes have been associated with hypertonic motor disorders in both mice and humans. Mutations in genes encoding other ligand- and voltage-gated ion channels have been identified in rare monogenic forms of idiopathic generalized epilepsies (IGE). We tested the hypothesis that allelic variants of the glycine receptor subunit genes, GLRA3 and GLRB, both localized on chromosome 4q, confer susceptibility to common subtypes of IGE. Mutation screening was carried out in index patients of 14 IGE families. No pathogenic mutation was found, but two intronic polymorphisms were detected in the GLRB gene, and four intronic, three exonic, and one 3,-UTR polymorphisms were identified for the GLRA3 gene. Subsequent screening for exonic and 3,-UTR polymorphisms in GLRA3 showed no statistical difference between a group of sporadic IGE patients (n,=,104) and a control group (n,=,141). The genotype frequencies for exonic and 3,-UTR polymorphisms in GLRA3 showed no statistically significant difference between IGE patients (n,=,104) and an ethnically matched control group (n,=,141). Thus, no association between IGE and alterations in GLRA3 or GLRB genes could be detected, indicating that both genes do not play a major causative role in the epileptogenesis of common IGE subtypes. Still, these novel single nucleotide polymorphisms may be useful markers for candidate gene analyses of other disorders. © 2001 Wiley-Liss, Inc. [source]


Mutational screening of the CYP26A1 gene in patients with caudal regression syndrome,

BIRTH DEFECTS RESEARCH, Issue 2 2006
Patrizia De Marco
Abstract BACKGROUND The retinoic acid (RA),catabolizing enzyme Cyp26a1 plays an important role in protecting tailbud tissues from inappropriate exposure to RA. Cyp26a1 -null animals exhibit caudal agenesis and spina bifida, imperforate anus, agenesis of the caudal portions of the digestive and urogenital tracts, and malformed lumbosacral skeletal elements. This phenotype closely resembles the most severe form of caudal agenesis in humans. In view of these findings, we investigated a potential involvement of the human CYP26A1 gene in the pathogenesis of caudal regression syndrome (CRS). METHODS Mutational screening of 49 CRS patients and 132 controls was performed using denaturing high-performance liquid chromatography and sequencing. Differences in the genotype and allele frequency of each SNP were evaluated by ,2 analysis. The biological significance of the intronic variants was investigated by transfection assays of mutant constructs and by analysis of the splicing patterns with RT-PCR. RESULTS Mutational screening allowed us to identify 6 SNPs, 4 of which (447C>G, 1134G>A, IVS1+10G>C, and IVS4+8AG>GA) are new. In addition, we describe a novel 2-site haplotype consisting of the 2 intronic SNPs. Both single-locus and haplotype analyses revealed no association with increased risk for CRS. The consequences of the 2 intronic polymorphisms on the mRNA splicing process were also investigated. Moreover, using functional and computational methods we demonstrated that both of these intronic polymorphisms affect the intron splicing efficiency. CONCLUSIONS Our research did not provide evidence that CYP26A1 has implications for the pathogenesis of human CRS. However, the relationship between CRS risk and the CYP26A1 genotype requires further study with a larger number of genotyped subjects. Birth Defects Research (Part A), 2006. © 2006 Wiley-Liss, Inc. [source]