Introduced Plants (introduced + plant)

Distribution by Scientific Domains

Terms modified by Introduced Plants

  • introduced plant species

  • Selected Abstracts


    Evidence for a combination of pre-adapted traits and rapid adaptive change in the invasive plant Centaurea stoebe

    JOURNAL OF ECOLOGY, Issue 4 2010
    Martin L. Henery
    Summary 1. Introduced plants have the potential to rapidly evolve traits of ecological importance that may add to their innate potential to become invasive. During invasions, selection may favour genotypes that are already pre-adapted to conditions in the new habitat and, over time, alter the characteristics of subsequent generations. 2. Spotted knapweed (Centaurea stoebe) occurs in two predominantly spatially separated cytotypes in its native range (Europe,Western Asia), but currently only the tetraploid form has been confirmed in the introduced range (North America), where it is invasive. We used several common garden experiments to examine, across multiple populations, whether tetraploids and diploids from the native range differ in life cycle, leaf traits and reproductive capacity and if such differences would explain the predominance of tetraploids and their advance into new habitats in the introduced range. We also compared the same traits in tetraploids from the native and introduced range to determine whether any rapid adaptive changes had occurred since introduction that may have enhanced invasive potential of the species in North America. 3. We found tetraploids had lower specific leaf area, less lamina dissection and fewer, narrower leaves than diploids. Diploids exhibited a monocarpic life cycle and produced few if any accessory rosettes. Diploids produced significantly more seeds per capitulum and had more capitula per plant than tetraploids. In contrast, the vast majority of European tetraploids continued to flower in both seasons by regenerating from multiple secondary rosettes, demonstrating a predominantly polycarpic life cycle. 4. During early growth tetraploids from North America achieved greater biomass than both tetraploids and diploids from the native range but this did not manifest as larger above-ground biomass at maturity. In North American tetraploids there was also evidence of a shift towards a more strictly polycarpic life cycle, less leaf dissection, greater carbon investment per leaf, and greater seed production per capitulum. 5.,Synthesis. Our results suggest that the characteristics of tetraploid C. stoebe pre-adapted them (compared to diploid conspecifics) for spread and persistence of the species into habitats in North America characterized by a more continental climate. After the species' introduction, small but potentially important shifts in tetraploid biology have occurred that may have contributed significantly to successful invasion. [source]


    Application and evaluation of classification trees for screening unwanted plants

    AUSTRAL ECOLOGY, Issue 5 2006
    PETER CALEY
    Abstract Risk assessment systems for introduced species are being developed and applied globally, but methods for rigorously evaluating them are still in their infancy. We explore classification and regression tree models as an alternative to the current Australian Weed Risk Assessment system, and demonstrate how the performance of screening tests for unwanted alien species may be quantitatively compared using receiver operating characteristic (ROC) curve analysis. The optimal classification tree model for predicting weediness included just four out of a possible 44 attributes of introduced plants examined, namely: (i) intentional human dispersal of propagules; (ii) evidence of naturalization beyond native range; (iii) evidence of being a weed elsewhere; and (iv) a high level of domestication. Intentional human dispersal of propagules in combination with evidence of naturalization beyond a plants native range led to the strongest prediction of weediness. A high level of domestication in combination with no evidence of naturalization mitigated the likelihood of an introduced plant becoming a weed resulting from intentional human dispersal of propagules. Unlikely intentional human dispersal of propagules combined with no evidence of being a weed elsewhere led to the lowest predicted probability of weediness. The failure to include intrinsic plant attributes in the model suggests that either these attributes are not useful general predictors of weediness, or data and analysis were inadequate to elucidate the underlying relationship(s). This concurs with the historical pessimism that we will ever be able to accurately predict invasive plants. Given the apparent importance of propagule pressure (the number of individuals of an species released), future attempts at evaluating screening model performance for identifying unwanted plants need to account for propagule pressure when collating and/or analysing datasets. The classification tree had a cross-validated sensitivity of 93.6% and specificity of 36.7%. Based on the area under the ROC curve, the performance of the classification tree in correctly classifying plants as weeds or non-weeds was slightly inferior (Area under ROC curve = 0.83 ± 0.021 (±SE)) to that of the current risk assessment system in use (Area under ROC curve = 0.89 ± 0.018 (±SE)), although requires many fewer questions to be answered. [source]


    Plant invasions , the role of mutualisms

    BIOLOGICAL REVIEWS, Issue 1 2000
    DAVID M. RICHARDSON
    ABSTRACT Many introduced plant species rely on mutualisms in their new habitats to overcome barriers to establishment and to become naturalized and, in some cases, invasive. Mutualisms involving animalmediated pollination and seed dispersal, and symbioses between plant roots and microbiota often facilitate invasions. The spread of many alien plants, particularly woody ones, depends on pollinator mutualisms. Most alien plants are well served by generalist pollinators (insects and birds), and pollinator limitation does not appear to be a major barrier for the spread of introduced plants (special conditions relating to Ficus and orchids are described). Seeds of many of the most notorious plant invaders are dispersed by animals, mainly birds and mammals. Our review supports the view that tightly coevolved, plant-vertebrate seed dispersal systems are extremely rare. Vertebrate-dispersed plants are generally not limited reproductively by the lack of dispersers. Most mycorrhizal plants form associations with arbuscular mycorrhizal fungi which, because of their low specificity, do not seem to play a major role in facilitating or hindering plant invasions (except possibly on remote islands such as the Galapagos which are poor in arbuscular mycorrhizal fungi). The lack of symbionts has, however, been a major barrier for many ectomycorrhizal plants, notably for Pinus spp. in parts of the southern hemisphere. The roles of nitrogen-fixing associations between legumes and rhizobia and between actinorhizal plants and Frankia spp. in promoting or hindering invasions have been virtually ignored in the invasions literature. Symbionts required to induce nitrogen fixation in many plants are extremely widespread, but intentional introductions of symbionts have altered the invasibility of many, if not most, systems. Some of the world's worst invasive alien species only invaded after the introduction of symbionts. Mutualisms in the new environment sometimes re-unite the same species that form partnerships in the native range of the plant. Very often, however, different species are involved, emphasizing the diffuse nature of many (most) mutualisms. Mutualisms in new habitats usually duplicate functions or strategies that exist in the natural range of the plant. Occasionally, mutualisms forge totally novel combinations, with profound implications for the behaviour of the introduced plant in the new environment (examples are seed dispersal mutualisms involving wind-dispersed pines and cockatoos in Australia; and mycorrhizal associations involving plant roots and fungi). Many ecosystems are becoming more susceptible to invasion by introduced plants because: (a) they contain an increasing array of potential mutualistic partners (e.g. generalist frugivores and pollinators, mycorrhizal fungi with wide host ranges, rhizobia strains with infectivity across genera); and (b) conditions conducive for the establishment of various alienalien synergisms are becoming more abundant. Incorporating perspectives on mutualisms in screening protocols will improve (but not perfect) our ability to predict whether a given plant species could invade a particular habitat. [source]


    Genetic differences in growth of an invasive tree species

    ECOLOGY LETTERS, Issue 6 2001
    Evan Siemann
    Invasive plants are often more vigorous in their introduced ranges than in their native ranges. This may reflect an innate superiority of plants from some habitats or an escape from their enemies. Another hypothesis proposes that invasive plants evolve increased competitive ability in their introduced range. We present the results of a 14-year common garden experiment with the Chinese Tallow Tree (Sapium sebiferum) from its native range (Asia), place of introduction to North America (Georgia) and areas colonized a century later (Louisiana and Texas). Invasive genotypes, especially those from recently colonized areas, were larger than native genotypes and more likely to produce seeds but had lower quality, poorly defended leaves. Our results demonstrate significant post-invasion genetic differences in an invasive plant species. Post-introduction adaptation by introduced plants may contribute to their invasive success and make it difficult to predict problem species. [source]


    Application and evaluation of classification trees for screening unwanted plants

    AUSTRAL ECOLOGY, Issue 5 2006
    PETER CALEY
    Abstract Risk assessment systems for introduced species are being developed and applied globally, but methods for rigorously evaluating them are still in their infancy. We explore classification and regression tree models as an alternative to the current Australian Weed Risk Assessment system, and demonstrate how the performance of screening tests for unwanted alien species may be quantitatively compared using receiver operating characteristic (ROC) curve analysis. The optimal classification tree model for predicting weediness included just four out of a possible 44 attributes of introduced plants examined, namely: (i) intentional human dispersal of propagules; (ii) evidence of naturalization beyond native range; (iii) evidence of being a weed elsewhere; and (iv) a high level of domestication. Intentional human dispersal of propagules in combination with evidence of naturalization beyond a plants native range led to the strongest prediction of weediness. A high level of domestication in combination with no evidence of naturalization mitigated the likelihood of an introduced plant becoming a weed resulting from intentional human dispersal of propagules. Unlikely intentional human dispersal of propagules combined with no evidence of being a weed elsewhere led to the lowest predicted probability of weediness. The failure to include intrinsic plant attributes in the model suggests that either these attributes are not useful general predictors of weediness, or data and analysis were inadequate to elucidate the underlying relationship(s). This concurs with the historical pessimism that we will ever be able to accurately predict invasive plants. Given the apparent importance of propagule pressure (the number of individuals of an species released), future attempts at evaluating screening model performance for identifying unwanted plants need to account for propagule pressure when collating and/or analysing datasets. The classification tree had a cross-validated sensitivity of 93.6% and specificity of 36.7%. Based on the area under the ROC curve, the performance of the classification tree in correctly classifying plants as weeds or non-weeds was slightly inferior (Area under ROC curve = 0.83 ± 0.021 (±SE)) to that of the current risk assessment system in use (Area under ROC curve = 0.89 ± 0.018 (±SE)), although requires many fewer questions to be answered. [source]


    Plant invasions , the role of mutualisms

    BIOLOGICAL REVIEWS, Issue 1 2000
    DAVID M. RICHARDSON
    ABSTRACT Many introduced plant species rely on mutualisms in their new habitats to overcome barriers to establishment and to become naturalized and, in some cases, invasive. Mutualisms involving animalmediated pollination and seed dispersal, and symbioses between plant roots and microbiota often facilitate invasions. The spread of many alien plants, particularly woody ones, depends on pollinator mutualisms. Most alien plants are well served by generalist pollinators (insects and birds), and pollinator limitation does not appear to be a major barrier for the spread of introduced plants (special conditions relating to Ficus and orchids are described). Seeds of many of the most notorious plant invaders are dispersed by animals, mainly birds and mammals. Our review supports the view that tightly coevolved, plant-vertebrate seed dispersal systems are extremely rare. Vertebrate-dispersed plants are generally not limited reproductively by the lack of dispersers. Most mycorrhizal plants form associations with arbuscular mycorrhizal fungi which, because of their low specificity, do not seem to play a major role in facilitating or hindering plant invasions (except possibly on remote islands such as the Galapagos which are poor in arbuscular mycorrhizal fungi). The lack of symbionts has, however, been a major barrier for many ectomycorrhizal plants, notably for Pinus spp. in parts of the southern hemisphere. The roles of nitrogen-fixing associations between legumes and rhizobia and between actinorhizal plants and Frankia spp. in promoting or hindering invasions have been virtually ignored in the invasions literature. Symbionts required to induce nitrogen fixation in many plants are extremely widespread, but intentional introductions of symbionts have altered the invasibility of many, if not most, systems. Some of the world's worst invasive alien species only invaded after the introduction of symbionts. Mutualisms in the new environment sometimes re-unite the same species that form partnerships in the native range of the plant. Very often, however, different species are involved, emphasizing the diffuse nature of many (most) mutualisms. Mutualisms in new habitats usually duplicate functions or strategies that exist in the natural range of the plant. Occasionally, mutualisms forge totally novel combinations, with profound implications for the behaviour of the introduced plant in the new environment (examples are seed dispersal mutualisms involving wind-dispersed pines and cockatoos in Australia; and mycorrhizal associations involving plant roots and fungi). Many ecosystems are becoming more susceptible to invasion by introduced plants because: (a) they contain an increasing array of potential mutualistic partners (e.g. generalist frugivores and pollinators, mycorrhizal fungi with wide host ranges, rhizobia strains with infectivity across genera); and (b) conditions conducive for the establishment of various alienalien synergisms are becoming more abundant. Incorporating perspectives on mutualisms in screening protocols will improve (but not perfect) our ability to predict whether a given plant species could invade a particular habitat. [source]