Home About us Contact | |||
Intranasal Challenge (intranasal + challenge)
Selected AbstractsImmunoglobulin E antibodies enhance pulmonary inflammation induced by inhalation of a chemical haptenCLINICAL & EXPERIMENTAL ALLERGY, Issue 3 2009C. B. Mathias Summary Background Occupational exposure to chemicals is an important cause of asthma. Recent studies indicate that IgE antibodies enhance sensitization to chemicals in the skin. Objective We investigated whether IgE might similarly promote the development of airway inflammation following inhalation of a contact sensitizer. Methods A model of chemical-induced asthma is described in which introduction of the low-molecular-weight compound, trinitrobenzene sulphonic acid (TNBS), via the respiratory tract was used for both sensitization and challenge. The role of IgE antibodies in the immune response to inhaled TNBS in this model was assessed by comparing the responses of wild-type (WT) and IgE-deficient (IgE,/,) mice on the BALB/c background. Reconstitution of circulating IgE levels by intravenous injection of IgE antibodies into IgE,/, mice before sensitization was performed to confirm the role of IgE in any differences observed between the responses of WT and IgE,/, mice. Results Intranasal challenge of TNBS-sensitized (but not sham-sensitized control mice) induced intense pulmonary inflammation. Macrophages, eosinophils and lymphocytes, including T, B, natural killer and natural killer T cells, were recruited to the airway and the animals displayed bronchial hyperresponsiveness (BHR) to methacholine. Serum levels of murine mast cell protease-1 (mMCP-1) were elevated suggesting mast cell activation. In contrast, the development of airway inflammation, recruitment of lymphocytes, induction of BHR and production of mMCP-1 were all significantly attenuated in IgE-deficient mice. Reconstitution of IgE,/, mice with IgE (of unrelated antigen specificity) before sensitization partially restored these features of asthma. Conclusion Our data indicate that IgE antibodies non-specifically enhance the development of airway inflammation induced by exposure to chemical antigens. [source] Tryptophan catabolites regulate mucosal sensitization to ovalbumin in respiratory airwaysALLERGY, Issue 3 2009S. O. Odemuyiwa Background:, Indoleamine 2,3 dioxygenase (IDO), the rate-limiting enzyme in tryptophan catabolism, is important in generating tolerance at the foetal,maternal interface. Studies using 1-methyl-tryptophan (1-MT), the specific inhibitor of IDO, showed that this enzyme is important in interferon-gamma (IFN-,)-dependent inhibition of allergic inflammation in the respiratory airway during immunotherapy. Aims of study:, We investigated the role of IDO in the development of allergic sensitization, leading to allergic inflammation and airway hyper-responsiveness (AHR). Methods:, We used a mouse model to generate mucosal tolerance to lipopolysaccharide-free ovalbumin (OVA) following repeated intranasal inoculation of OVA over a 3-day period. We tested the successful induction of tolerance by subsequent intraperitoneal (i.p.) sensitization followed by intranasal challenge with OVA. A slow-release pellet of 1-MT implanted into mice was used to block IDO activity prior to repeated intranasal inoculation of OVA. We measured T-cell proliferation in response to OVA, determined airway inflammation, and measured AHR to intranasal methacholine to investigate the role of IDO in sensitization to OVA. Results:, Repeated intranasal administration of OVA generated tolerance and prevented a subsequent sensitization to OVA via the i.p. route. This response was inhibited in mice receiving a slow-release pellet of 1-MT. However, we successfully reconstituted tolerance in mice receiving 1-MT following intra-peritoneal injection of a mixture of kynurenine and hydroxyanthranilic acid. Conclusion:, Our data suggest that, in addition to their role in IFN-,-mediated inhibition of allergic airway inflammation, products of tryptophan catabolism play an important role in the prevention of sensitization to potential allergens in the respiratory airway. [source] Allergic airway inflammation is exacerbated during acute influenza infection and correlates with increased allergen presentation and recruitment of allergen-specific T-helper type 2 cellsCLINICAL & EXPERIMENTAL ALLERGY, Issue 8 2004B. J. Marsland Summary Background Respiratory viral infections are a leading cause of the hospitalization of asthmatics, however, the cellular immunological interactions which underlie these two diseases remain elusive. Objective We sought to characterize the effect influenza viral infection has on allergic airway inflammation and to identify the cellular pathways involved. Methods We have used an ovalbumin (OVA) model of allergic airway inflammation, which involves sensitization of animals with OVA adsorbed in alum adjuvant followed by an intranasal challenge with OVA in phosphate-buffered saline. To study T cell recruitment into the lung, we adoptively transferred in vitro activated T cell receptor-transgenic T cells, which were subsequently identified by fluorescence-activated cell sorting (FACS) analysis. In addition, to study in vivo dendritic cell (DC) migration, we administered fluorescently labelled dextran and identified DCs that had phagocytosed it by FACS analysis. Results We found that different stages of influenza infection had contrasting effects upon the outcome of OVA-induced allergic airway inflammation. The allergic response against OVA was exacerbated during the acute stage of influenza infection; however, mice were protected against the development of airway eosinophilia at late time-points following infection. We investigated the mechanisms responsible for the virus-induced exacerbation and found that the response was partially independent of IL-4 and that there was increased delivery of inhaled allergens to the draining lymph node during the acute stage of the infection. In addition, virus-induced inflammation in the lung and draining lymph node resulted in the non-specific recruitment of circulating allergen-specific effector/memory cells. Conclusion In addition to virus-mediated damage to the lung and airways, influenza viral infection can also enhance unrelated local allergic responses. [source] Vaccination of neonatal calves with Mycobacterium bovis BCG induces protection against intranasal challenge with virulent M. bovisCLINICAL & EXPERIMENTAL IMMUNOLOGY, Issue 1 2005J. C. Hope Summary Vaccination of neonates with Mycobacterium bovis bacillus Calmette,Guérin (BCG) may be a strategy that overcomes reduced vaccine efficacy associated with exposure to environmental mycobacteria in humans and cattle. Preliminary comparisons indicated that 2-week-old calves produced an immune response to vaccination at least as intense as that observed in adults. Subsequently, five gnotobiotic hysterotomy derived calves aged 1 day were inoculated with BCG and 3 months later were challenged intranasally with virulent M. bovis. The number of tissues with lesions and the pathological extent of these lesions was reduced significantly in vaccinates. Furthermore, lesions were evident in the lung or associated chest lymph nodes of four of five controls but none of five vaccinates. BCG vaccination reduced significantly the level of bacterial colonization. However, lesions in the head associated lymph nodes were observed in three of five BCG-vaccinated cattle. Levels of interferon gamma (IFN-,) detected by enzyme-linked immunosorbent assay (ELISA) or enzyme-linked immunospot (ELISPOT) in individual vaccinated animals at challenge did not correlate with subsequent resistance and in general immune responses post-challenge were lower in vaccinated calves. Low IL-10 responses were evident but IL-4 was not detected. Responses to ESAT-6 and/or CFP-10 were evident in four of four control calves that had lesions. Two of the BCG vaccinates with lesions did not produce a response to ESAT-6 and CFP-10, indicating that these antigens did not distinguish vaccinated immune animals from vaccinated animals with lesions. Overall, vaccination of neonatal calves with BCG induced significant protection against disease and has potential as a strategy for the reduction of the incidence of bovine tuberculosis. [source] Effect of proteolytic activity of Epicoccum purpurascens major allergen, Epi p 1 in allergic inflammationCLINICAL & EXPERIMENTAL IMMUNOLOGY, Issue 2 2008N. Kukreja Summary Enzymes play an important role in inducing airway inflammation, but knowledge is limited to few proteins. This study was carried out to assess the role of Epi p 1, a serine protease of Epicoccum purpurascens, in inducing allergy and inflammation in a murine model. Balb/c mice were sensitized with Epi p 1 active protease (EAP) or Epicoccum extract. Subsequently, Epi p 1 sensitized mice were boosted on day 14 with EAP or inactivated protease (EIAP). Three intranasal challenges were given and mice were killed to obtain blood, bronchoalveolar lavage fluid (BALF), spleen and lung tissues. Cellular airways infiltration, immunoglobulin E (Ig)E titres and cytokine levels in BALF and splenocyte culture supernatant were compared. Mice immunized with EAP had higher Epi p 1-specific serum IgE and IgG1 than EIAP immunized mice (P < 0·01). There was a twofold difference in the number of eosinophils in BALF of EAP mice and EIAP mice (P < 0·01). A similar trend was recorded for eosinophil peroxidase activity (P < 0·05), indicating the role of proteolytic activity in inducing inflammation. Further, lung histology revealed increased leucocyte infiltration and airway narrowing, with higher inflammation scores in the EAP group than in the EIAP group. The lungs of EAP mice showed increased mucus and goblet cell metaplasia. Interleukin (IL)-4 and IL-5 levels were higher in BALF and splenocyte culture supernatant of EAP mice than in EIAP mice (P < 0·05), indicating a T helper 2 response. Proteolytic activity of Epi p 1 plays an important role in inducing allergic inflammation. The enzymatically inactive form may be investigated for immunotherapy. [source] |