Intraguild Predation (intraguild + predation)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Trophic supplements to intraguild predation

OIKOS, Issue 4 2007
Matthew P. Daugherty
Intraguild predation (IGP) is a dominant community module in terrestrial food webs that occurs when multiple consumers feed both on each other and on a shared prey. This specific form of omnivory is common in terrestrial communities and is of particular interest for conservation biology and biological control given its potential to disrupt management of threatened or pest species. Extensive theory exists to describe the dynamics of three-species IGP, but these models have largely overlooked the potential for other, exterior interactions, to alter the dynamics within the IGP module. We investigated how three forms of feeding outside of the IGP module by intraguild predators (i.e. trophic supplementation) affect the dynamics of the predators (both IG predator and IG prey) and their shared resource. Specifically, we examined how the provision of a constant donor-controlled resource, the availability of an alternative prey species, and predator plant-feeding affect the dynamics of IGP models. All three forms of trophic supplements modified the basic expectations of IGP theory in two important ways, and their effects were similar. First, coexistence was possible without the IG prey being a superior competitor for the original shared resource if the IG prey could effectively exploit one of the types of trophic supplements. However, supplements to the IG predator restricted the potential for coexistence. Second, supplements to the IG prey ameliorated the disruptive effects of the IG predator on the suppression of the shared resource, promoting effective control of the resource in the presence of both predators. Consideration of these three forms of trophic supplementation, all well documented in natural communities, adds substantial realism and predictive power to intraguild predation theory. [source]


Do competitive intraguild interactions affect space and habitat use by small carnivores in a forested landscape?

ECOGRAPHY, Issue 4 2006
Caroline St-Pierre
Complex interactions such as interference competition and predation, including intraguild predation, are now recognized as important components in animal community structure. At the lower end of a guild, weasels may be highly affected by other guild members due to small body size in relation to other predators. In 2000 and 2001, we radio-collared 24 ermines Mustela erminea and 25 long-tailed weasels M. frenata in 2 areas that differed in abundance of guild members. We tested the hypothesis that when faced with an increased density of other guild members, weasels would modify space and habitat use to reduce the risk of predation associated with encounters involving guild members. We predicted that weasels would increase use of specific habitats (such as refuges) to reduce encounter rates in the presence of a greater number of guild members. Because M. erminea is smaller than M. frenata and thus better able to take advantage of small rodent burrows as refuges from predators and as feeding grounds, we also predicted that M. frenata would show a stronger response to a higher abundance of guild members than M. erminea. Results were consistent with our predictions. Faced with an increased abundance of guild members, M. frenata showed increased habitat selectivity and reduced activity levels, which resulted in increased daily travel distances and increased home ranges. Mustela erminea responded to an increased abundance of guild members through reduced use of preferred habitat which M. frenata already occupied. The contrasting pattern of habitat selection observed between the 2 mustelid species suggested cascading effects, whereby large-predator pressure on M. frenata relaxed pressure of M. frenata on M. erminea. Our results draw attention to the likelihood that competitive intraguild interactions play a facilitating role in M. erminea,M. frenata coexistence. [source]


Geographic variation in prey preference in bark beetle predators

ECOLOGICAL ENTOMOLOGY, Issue 2 2009
JOHN D. REEVE
Abstract 1.,Bark beetles and their predators are useful systems for addressing questions concerning diet breadth and prey preference in arthropod natural enemies. These predators use bark beetle pheromones to locate their prey, and the response to different pheromones is a measure of prey preference. 2.,Trapping experiments were conducted to examine geographic variation in the response to prey pheromones by two bark beetle predators, Thanasimus dubius and Temnochila virescens. The experiments used pheromones for several Dendroctonus and Ips prey species (frontalin, ipsdienol, and ipsenol) and manipulated visual cues involved in prey location (black vs. white traps). The study sites included regions where the frontalin-emitter Dendroctonus frontalis was in outbreak vs. endemic or absent. 3.,There was significant geographic variation in pheromone preference for T. dubius. This predator strongly preferred a pheromone (frontalin) associated with D. frontalis at outbreak sites, while preference was more even at endemic and absent sites. No geographic variation was found in the response by T. virescens. White traps caught fewer insects than black traps for both predators, suggesting that visual cues are also important in prey location. 4.,The overall pattern for T. dubius is consistent with switching or optimal foraging theory, assuming D. frontalis is a higher quality prey than Ips. The two predator species partition the prey pheromones in areas where D. frontalis is abundant, possibly to minimise competition and intraguild predation. [source]


Dropping behaviour of larvae of aphidophagous ladybirds and its effects on incidence of intraguild predation: interactions between the intraguild prey, Adalia bipunctata (L.) and Coccinella septempunctata (L.), and the intraguild predator, Harmonia axyridis Pallas

ECOLOGICAL ENTOMOLOGY, Issue 2 2005
Satoru Sato
Abstract., 1.,Two experiments were performed in the laboratory to assess the behaviour of dropping from a host plant as a defence against intraguild predation in aphidophagous ladybird larvae. 2.,In the first experiment, encounters were observed on bean plants between fourth instars of the intraguild predator species, Harmonia axyridis, and first instars of two other ladybird species, Adalia bipunctata (L.) and Coccinella septempunctata (L.). The percentages of first instars of the latter two species that dropped from the plant in response to attack differed dramatically, with 47.5% of C. septempunctata first instars dropping vs. 0% of A. bipunctata. 3.,In the second experiment, first instars of A. bipunctata or C. septempunctata and a fourth instar of H. axyridis were allowed to forage together on bean plants for 3 h. During this time, 44.3% of C. septempunctata larvae dropped from the plant, but less than 2% of A. bipunctata larvae did so. In contrast, 95.0% of A. bipunctata larvae fell victim to intraguild predation by H. axyridis vs. only 54.5% of C. septempunctata larvae. 4.,The significance of dropping behaviour of ladybird larvae as a defence against intraguild predation, and the relationship of dropping behaviour to species-specific habitat affinity of ladybirds, is discussed. [source]


Understanding biodiversity effects on prey in multi-enemy systems

ECOLOGY LETTERS, Issue 9 2006
Paolo Casula
Abstract Biodiversity,ecosystem functioning theory would predict that increasing natural enemy richness should enhance prey consumption rate due to functional complementarity of enemy species. However, several studies show that ecological interactions among natural enemies may result in complex effects of enemy diversity on prey consumption. Therefore, the challenge in understanding natural enemy diversity effects is to predict consumption rates of multiple enemies taking into account effects arising from patterns of prey use together with species interactions. Here, we show how complementary and redundant prey use patterns result in additive and saturating effects, respectively, and how ecological interactions such as phenotypic niche shifts, synergy and intraguild predation enlarge the range of outcomes to include null, synergistic and antagonistic effects. This study provides a simple theoretical framework that can be applied to experimental studies to infer the biological mechanisms underlying natural enemy diversity effects on prey. [source]


Ecology of invasive mosquitoes: effects on resident species and on human health

ECOLOGY LETTERS, Issue 5 2005
Steven A. Juliano
Abstract Investigations of biological invasions focus on patterns and processes that are related to introduction, establishment, spread and impacts of introduced species. This review focuses on the ecological interactions operating during invasions by the most prominent group of insect vectors of disease, mosquitoes. First, we review characteristics of non-native mosquito species that have established viable populations, and those invasive species that have spread widely and had major impacts, testing whether biotic characteristics are associated with the transition from established non-native to invasive. Second, we review the roles of interspecific competition, apparent competition, predation, intraguild predation and climatic limitation as causes of impacts on residents or as barriers to invasion. We concentrate on the best-studied invasive mosquito, Aedes albopictus, evaluating the application of basic ecological theory to invasions by Aedes albopictus. We develop a model based on observations of Aedes albopictus for effects of resource competition and predation as barriers to invasion, evaluating which community and ecosystem characteristics favour invasion. Third, we evaluate the ways in which invasive mosquitoes have contributed to outbreaks of human and animal disease, considering specifically whether invasive mosquitoes create novel health threats, or modify disease transmission for existing pathogen,host systems. [source]


Vulnerability of larvae of two species of aphidophagous ladybirds, Adalia bipunctata Linnaeus and Harmonia axyridis Pallas, to cannibalism and intraguild predation

ENTOMOLOGICAL SCIENCE, Issue 2 2009
Satoru SATO
Abstract Vulnerability of larvae of two species of aphidophagous ladybirds, Adalia bipunctata Linnaeus and Harmonia axyridis Pallas, to cannibalism and intraguild predation was assessed in the laboratory. In the first experiment, a first instar of one of the two above species was kept with a fourth instar of the other species in a Petri dish. The number of times each first instar larva was encountered by the fourth instar larva and the fate of the first instar was determined over a period of 10 min. The fourth instar larvae captured and killed all the first instar larvae of their own species at the first encounter. However, when presented with fourth instar larvae of the other species the first instar larvae of A. bipunctata and H. axyridis were encountered 6.4 ± 1.3 (n = 10) and 19.4 ± 2.1 (n = 10), respectively. In this experiment no first instar larvae of H. axyridis, whereas all those of A. bipunctata, were killed. [source]


Niche overlap between marsupial and eutherian carnivores: does competition threaten the endangered spotted-tailed quoll?

JOURNAL OF APPLIED ECOLOGY, Issue 2 2008
A. S. Glen
Summary 1The significance of top-down regulation by carnivores is receiving increasing global recognition. As a consequence, key objectives in many programmes that seek to maintain ecosystem function now include conserving carnivores and understanding their interactions. This study examined overlap in resource use (space and diet) of introduced eutherian carnivores and an endangered marsupial carnivore, the spotted-tailed quoll Dasyurus maculatus, in eastern Australia. We also investigated mechanisms of niche partitioning and evidence for interspecific aggression. 2Dietary overlap between quolls, red foxes Vulpes vulpes and wild dogs Canis lupus ssp. was assessed by analysis of scats. Trapping, radio-tracking and direct observations were used to quantify spatial overlap between quolls, foxes, wild dogs and feral cats Felis catus. 3Dietary overlap among the carnivores was extensive. Medium-sized mammals were the most important prey for all three predators, indicating potential for exploitative interactions. However, hunting of different size classes of secondary prey and consumption by quolls of more arboreal prey than their counterparts may assist coexistence. Remains of quoll were found in two dog scats, and cat hair in another, possibly indicating intraguild predation. 4We observed extensive spatial overlap between quolls and eutherian carnivores. However, we inferred from dietary data that quolls foraged primarily in forested habitat, while canids foraged mainly in cleared habitat. 5Synthesis and applications. Our results indicate strong potential for competition between spotted-tailed quolls and eutherian carnivores, and thus a situation where control of introduced predators may be desirable, not only for the conservation of prey species but also for the protection of native carnivores. Concern over potential non-target mortality of quolls has hindered efforts to control foxes in eastern Australia using poison baits. We contend that, rather than harming quoll populations, baiting for foxes should aid the conservation of quolls and should be implemented in areas of sympatry where fox numbers are high. [source]


Environment and host-plant genotype effects on the seasonal dynamics of a predatory mite on cassava in sub-humid tropical Africa

AGRICULTURAL AND FOREST ENTOMOLOGY, Issue 3 2009
Christine Zundel
Abstract 1,In tropical dry seasons, survival of small arthropods such as predatory mites is often negatively affected by low relative humidity (RH). For species that do not diapause or migrate to refuges, the ability of the habitat to mitigate climatic conditions becomes crucial. 2,The relative effect of macro-habitat (dry grassland hill, humid multiple cropping area, humid riparian forest) and microhabitat (host-plant genotypes with hairy, semi-hairy and glabrous apices) on the seasonal dynamics of the phytoseiid mite Typhlodromalus aripo, a predator of Mononychellus tanajoa on cassava, was examined in a field experiment during a dry season. The effect of RH and plant genotype on T. aripo egg survival was determined in an environment control chamber. 3,Predator abundance was higher in humid multiple cropping areas and on hairy cassava compared with the other habitat types and cassava genotypes. 4,Discriminant and regression analyses showed that the predator's dry season persistence was related to high RH, high plant vigour and hairy apices, but not to prey abundance. 5,In the controlled climate experiment, the effect of host-plant morphology was evident only at the intermediate RH level of 55%. An effect of apex hairiness was not found. 6,It is concluded that the effect of genotype on T. aripo persistence diminishes under low RH conditions, and that supportive effects of apex hairs become effective only in the field, probably through protection from wind and/or intraguild predation. Humid multiple cropping areas planted with hairy and vigorous cassava genotypes are suitable dry season reservoirs for T. aripo. [source]


Trophic promiscuity, intraguild predation and the problem of omnivores

AGRICULTURAL AND FOREST ENTOMOLOGY, Issue 2 2009
Mark D. Hunter
First page of article [source]


Effect of intraguild predation on the survival and development of three species of aphidophagous ladybirds: consequences for invasive species

AGRICULTURAL AND FOREST ENTOMOLOGY, Issue 1 2004
Satoru Sato
Abstract 1,Survival and development of hatchling larvae of three aphidophagous ladybirds (Coleoptera: Coccinellidae), Harmonia axyridis Pallas, Coccinella septempunctata brucki Mulsant and Adalia bipunctata Linnaeus, when fed their own and the other species eggs were recorded. 2,In all three species, the larvae survived when fed conspecific eggs. 3,The percentage of larvae of H. axyridis that survived decreased to 35% and 85% when fed eggs of A. bipunctata and C. s. brucki, respectively. All the larvae of A. bipunctata and C. s. brucki died after eating eggs of H. axyridis. None of the larvae of C. s. brucki died after eating eggs of A. bipunctata, whereas 46% of those of A. bipunctata died after eating eggs of C. s. brucki. 4,In general, larvae were reluctant to eat the eggs of other species. However, larvae of C. s. brucki showed less reluctance than H. axyridis to eat the eggs of A. bipunctata. 5,The consequence of this for invasive species of ladybird is discussed. [source]


Competition and coexistence in sympatric bobcats and pumas

JOURNAL OF ZOOLOGY, Issue 3 2009
C. C. Hass
Abstract Space use and diets of sympatric bobcats Lynx rufus and pumas Puma concolor were compared using sign surveys and scat analysis during 1997,2002 in south-eastern Arizona, USA. Bobcats appeared to use grassland, scrub, riparian and woodland habitats equally, but pumas had higher activity in riparian and woodland habitats. There was little evidence that bobcats avoided pumas in space use. Bobcats ate primarily rodents (33% of items in scats), lagomorphs (32%) and ungulates (16%), whereas pumas ate primarily ungulates (69%) and carnivores (21%). Pumas had a narrower dietary niche breadth than bobcats, and puma diet overlapped bobcat diet by 56%, suggesting that pumas may be more vulnerable to changes in prey density than bobcats. Pumas also killed and consumed bobcats, indicating that interference competition may be manifesting through intraguild predation. [source]


The predatory impact of the freshwater invader Dikerogammarus villosus on native Gammarus pulex (Crustacea: Amphipoda); influences of differential microdistribution and food resources

JOURNAL OF ZOOLOGY, Issue 1 2005
Calum MacNeil
Abstract Predation between invading and native species can produce patterns of exclusion and coexistence. Dikerogammarus villosus, a Ponto-Caspian amphipod species, has invaded many central European freshwaters in the past decade, replacing native Gammarus amphipod species. For instance, the arrival of D. villosus in Holland has been accompanied by the decline of Gammarus duebeni and G. tigrinus populations within invaded systems. This study examined what may happen when D. villosus eventually encounters native Dutch populations of Gammarus pulex, and how factors such as microhabitat and food resource availability could contribute to a future species replacement or coexistence. A laboratory simulation of a lake/pooled area of river indicated that G. pulex and D. villosus differed in distribution within the same habitat, and showed that although the distribution of the native differed in the presence of the invader, the presence of the native had no effect on the distribution of the invader. Gammarus pulex suffered severe intraguild predation (IGP) from D. villosus in mixed species treatments with no reciprocal predation of D. villosus by G. pulex. This IGP occurred regardless of whether no alternative food resource was available (91% of the G. pulex population eliminated after 7 days), or alternative foods/prey were available to excess, such as leaf material (85%), chironomids (77%) or fish food flakes (74%). We conclude that although differential microdistribution of the two species could promote coexistence, the presence of alternative foods/prey resources, merely slow the rate of IGP and replacement of the native by the invader. Our study joins one of an increasing number emphasizing the potential damaging impacts of D. villosus on native communities. [source]


Influence of predator-specific defense adaptation on intraguild predation

OIKOS, Issue 3 2010
Takefumi Nakazawa
The persistence of intraguild predation (IGP), the prey,predator interaction between competing species, is puzzling because simple IGP models readily predict species extinction. In this study, we explored a mathematical model incorporating predator-specific defense adaptation of basal prey against intraguild prey and intraguild predator. The model explicitly described the dynamics of the defense effort against each predator under the assumption that anti-predator defense was associated with reducing effort allocated to reproduction. The model predicted that defense adaptation (i.e. the ability to reallocate defense effort) would facilitate coexistence, particularly when system productivity is high; at low productivity, coexistence would be facilitated or inhibited depending on initial effort allocation prior to defense adaptation. In addition, we found that three-species dynamics became more stable at higher adaptation rates. The results suggest that common behavioral changes, such as predator-specific defense adaptation, have significant implications for the community structure and dynamics of IGP systems. [source]


Competition and intraguild egg predation among freshwater snails: re-examining the mechanism of interspecific interactions

OIKOS, Issue 11 2007
Andrew M. Turner
Experimental and field studies suggest that freshwater snail species have negative effects on each other's population growth rates. Because snails share similar diets, these interactions have been interpreted as the result of exploitative competition, but they could also result from intraguild predation. Here we present three experiments aimed at testing the hypothesis that interspecific interactions among three species of freshwater gastropod (Helisoma trivolvis, Physa acuta and Stagnicola elodes) are mediated by intraguild egg predation. Foraging trials, conducted in a laboratory, showed that some snails readily prey on eggs, but the extent of egg predation depended on both the identity of the snail predator and the identity of the egg mass. Of the three species considered, Stagnicola had the largest effect on egg mortality and Physa had no effect on egg mortality. Foraging trials also showed that the eggs of Physa were the most vulnerable to predators and that the eggs of Stagnicola were largely invulnerable. A study conducted in large outdoor mesocosms assessed the occurrence of egg mortality in an environment of more extensive spatial scale and complexity. The results largely mirrored those of the laboratory study, with Stagnicola being the most voracious predator and the eggs of Physa being most vulnerable to predation. The reproductive success of Physa and Stagnicola raised in sympatry and allopatry was assessed in a mesocosm study conducted over three months. Recruitment of both species was depressed in sympatry, but patterns of growth in the survivors suggest contrasting mechanisms of suppression: Physa suppressed Stagnicola via exploitative competition, but Stagnicola suppressed Physa via egg predation. These experiments support the hypothesis that freshwater snail assemblages are structured by strong interspecific interactions and that a rich interplay of egg predation and interspecific competition underlie interactions among the members of this guild. [source]


Trophic supplements to intraguild predation

OIKOS, Issue 4 2007
Matthew P. Daugherty
Intraguild predation (IGP) is a dominant community module in terrestrial food webs that occurs when multiple consumers feed both on each other and on a shared prey. This specific form of omnivory is common in terrestrial communities and is of particular interest for conservation biology and biological control given its potential to disrupt management of threatened or pest species. Extensive theory exists to describe the dynamics of three-species IGP, but these models have largely overlooked the potential for other, exterior interactions, to alter the dynamics within the IGP module. We investigated how three forms of feeding outside of the IGP module by intraguild predators (i.e. trophic supplementation) affect the dynamics of the predators (both IG predator and IG prey) and their shared resource. Specifically, we examined how the provision of a constant donor-controlled resource, the availability of an alternative prey species, and predator plant-feeding affect the dynamics of IGP models. All three forms of trophic supplements modified the basic expectations of IGP theory in two important ways, and their effects were similar. First, coexistence was possible without the IG prey being a superior competitor for the original shared resource if the IG prey could effectively exploit one of the types of trophic supplements. However, supplements to the IG predator restricted the potential for coexistence. Second, supplements to the IG prey ameliorated the disruptive effects of the IG predator on the suppression of the shared resource, promoting effective control of the resource in the presence of both predators. Consideration of these three forms of trophic supplementation, all well documented in natural communities, adds substantial realism and predictive power to intraguild predation theory. [source]


Impact of intraguild predation and lambda-cyhalothrin on predation efficacy of three acarophagous predators

PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 6 2005
Caroline Provost
Abstract This laboratory study reports the interaction of three predators found in commercial apple orchards in Quebec, Hyaliodes vitripennis (Say) (Hemiptera: Miridae), Harmonia axyridis Pallas (Coleoptera: Coccinellidae) and Amblyseius fallacis (Garman) (Acarina: Phytoseiidae). First, intraguild predation between H vitripennis and the two other predators was characterized in the absence and presence of their extraguild prey, Tetranychus urticae Koch. The results showed an asymmetrical interaction in favour of the larger predator and the levels of intraguild predation were weak for the two predatory combinations. Presence of the phytophagous mite reduced the intensity of intraguild predation in the predatory combination of H axyridis and H vitripennis. Second, the effects of intraguild predation and the application of lambda-cyhalothrin on predation efficacy of the predators were evaluated. The application of the insecticide reduced prey consumption of H vitripennis and H axyridis but did not affect that of A fallacis. Combination of predators and an insecticide application resulted in two different situations depending on the species involved: a reduced predation efficacy for the combination of H vitripennis and H axyridis due to a knockdown effect caused by the insecticide, and no effect on T urticae consumption for H vitripennis and A fallacis. It is suggested that an integrated pest management program based on H vitripennis, A fallacis and lambda-cyhalothrin may be evaluated to repress phytophagous mites in Quebec orchards. Copyright © 2005 Society of Chemical Industry [source]


Occasional intraguild predation structuring small mammal assemblages: the marsupial Didelphis aurita in the Atlantic Forest of Brazil

AUSTRAL ECOLOGY, Issue 5 2009
MAÍRA C. MOURA
Abstract The didelphid marsupial, Didelphis aurita, is suggested as an intraguild predator and as key-species in small mammal assemblages of the Atlantic Forest of Brazil. The field experiments required to test this hypothesis are complex to implement, but the recent revival of regression methods offers a viable alternative. Here we use the dynamic and static regression methods to determine the importance of D. aurita as a competitor and intraguild predator. Capture,recapture data from two localities in the Rio de Janeiro State were used, Garrafão (municipality of Guapimirim), a coastal forest of the Serra do Mar, and Barra de Maricá, a costal sand dune vegetation. Population and microhabitat variables were monitored from April 1997 to April 2003 in Garrafão, and from January 1986 to July 1990 in Barra de Maricá. Microhabitat variables were related to Canopy, Plant, Litter and Rock covers, Obstruction from 0 to 1.5 m, and Number of logs. Exploitation competition was tested by the dynamic method, which models the effects of D. aurita on the per capita growth rate of a species. Interference by predation or competition was tested by the static method, where the abundance of D. aurita at trap stations was regressed against the abundance of other small mammals, after removal of any variation associated with microhabitat factors. Exploitation competition was not detected, but the interference of D. aurita was pervasive, affecting all small mammals studied in the two localities. The clear avoidance of D. aurita by all small mammals tested in two localities of different physiognomies indicates that it functions as an intraguild predator, even if actual predation by D. aurita is an occasional event. [source]


Intraguild interactions promote assortative mating and affect sexual attractiveness in a phytophagous fly

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 1 2009
TOM READER
Changes in acoustic and substrate-borne sexual signals in phytophagous insects associated with host plant shifts are known to have the potential to promote assortative mating, reproductive isolation and speciation. In this article, we ask whether the switch between pure herbivory and intraguild predation (IGP), which is common amongst phytophagous insects, has similar potential. Male flies in the genus Lipara (Diptera: Chloropidae) search for females by vibrating reed stems and waiting for a reply. By kleptoparasitizing other phytophagous species in the genus (a form of IGP), Lipara rufitarsis can increase its nonsexual fitness considerably. We looked at the impact of IGP on the timing of hatching, body size and attractiveness of male calls in L. rufitarsis. L. rufitarsis males that had engaged in IGP hatched significantly earlier than purely phytophagous flies and were significantly larger, but their calls were less likely to elicit responses from females during playback experiments. We conclude that, although behavioural observations of females provided no evidence of ,like preferring like', changes in phenology associated with IGP are likely to promote assortative mating in this system. The general preference of females for the calls of smaller males is a phenomenon worthy of further study: it may have no adaptive significance, or it may indicate that mating with large males is associated with a fitness cost. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98, 171,180. [source]