Home About us Contact | |||
Intracolonic Administration (intracolonic + administration)
Selected AbstractsProteinase-activated receptor-1 is an anti-inflammatory signal for colitis mediated by a type 2 immune responseINFLAMMATORY BOWEL DISEASES, Issue 9 2005Nicolas Cenac PhD Abstract Background: Activation of colonic proteinase activated receptor-1 (PAR1) provokes colonic inflammation and increases mucosal permeability in mice. The mechanism of inflammation is not neurogenic like in the paw of rats but depends on PAR1 -mediated activation monocytic cells. PAR1 activation in the colon increases the release of lymphocyte T helper-1 (TH1) cytokines. Moreover, PAR1 expression is increased in biopsies from patients with inflammatory bowel disease, and its activation during TH1-mediated colitis in mice increases all of the hallmarks of inflammation. Methods: This study aimed to characterize the effects of PAR1 activation in oxazolone-mediated colitis, involving a TH2 cytokine profile. Results: Intracolonic administration of oxazolone increased myeloperoxidase activity, damage score, and interleukin (IL)-4, IL-10, tumor necrosis factor ,, and IL-1, mRNA expression but lowered interferon-, mRNA expression, indicating colonic inflammation of a TH2 profile. The concurrent intracolonic administration of a PAR1 agonist in oxazolone-treated mice inhibited colitis, resulting in a reduction of myeloperoxidase activity, damage score, and inflammatory cytokine mRNA expression. Using PAR1 -deficient mice, we confirmed that the anti-inflammatory effects of PAR1 agonists were mediated by PAR1. Moreover, in PAR1 -deficient mice or in mice treated with a PAR1 antagonist, oxazolone-induced colitis was exacerbated, showing an endogenous modulatory role for PAR1 in this TH2 cytokine profile of colitis. Conclusions: Thus, as opposed to a previously shown proinflammatory role for PAR1 in a TH1 cytokine-mediated colitis, our new data show anti-inflammatory role for PAR1 activation in the setting of TH2 cytokine colitis model. [source] Ecabet sodium promotes the healing of trinitrobenzene-sulfonic-acid-induced ulceration by enhanced restitution of intestinal epithelial cellsJOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, Issue 7 2010Tomohisa Takagi Abstract Background and Aims:, Ecabet sodium (ES) is a gastric mucosal protective and ulcer-healing agent. Recently enema therapy with ES was found to be effective for the treatment of human ulcerative colitis as well as experimental colitis in an animal model. Whereas ES possesses potential as a novel treatment for ulcerative colitis, its precise mechanism of action remains to be elucidated. In this study, we investigated the therapeutic efficacy of ES in an experimental rat model of colitis, and evaluated the restitution of intestinal epithelial cells treated with ES in vitro. Methods:, Acute colitis was induced with trinitrobenzene sulfonic acid (TNBS) in male Wistar rats. Rats received intrarectal treatment with ES daily starting on day 7 and were sacrificed on day 14 after the administration of TNBS. The distal colon was removed to evaluate various parameters of inflammation. Moreover, wound-healing assays were used to determine the enhanced restitution of rat intestinal epithelial (RIE) cells treated with ES. Results:, Intracolonic administration of ES accelerated TNBS-induced ulcer healing. Increases in the wet weight of the colon after TNBS administration were significantly inhibited by ES treatment. The wound assay revealed ES enhancement of the migration of RIE cells migration through the phosphorylation of extracellular signal-regulated kinase. Conclusion:, Daily administration of an ES enema promoted the healing of intestinal mucosal injury, in part by the enhanced restitution of intestinal epithelial cells via extracellular signal-regulated kinase activation. ES may thus represent a novel therapeutic approach for the treatment of inflammatory bowel disease. [source] A comparative study of the preventative effects exerted by three probiotics, Bifidobacterium lactis, Lactobacillus casei and Lactobacillus acidophilus, in the TNBS model of rat colitisJOURNAL OF APPLIED MICROBIOLOGY, Issue 4 2007L. Peran Abstract Aims:, The intestinal anti-inflammatory effects of three probiotics with immunomodulatory properties, Lactobacillus casei, Lactobacillus acidophilus and Bifidobacterium lactis, were evaluated and compared in the trinitrobenzenesulphonic acid (TNBS) model of rat colitis. Methods and Results:, Colitis was induced in rats by intracolonic administration of 10 mg of TNBS dissolved in 0·25 ml of 50% ethanol. Each probiotic was administered orally (5 × 108 CFU suspended in 0·5 ml of skimmed milk) for 3 weeks, starting 2 weeks before the administration of TNBS. Colonic damage was evaluated histologically and biochemically 1 week after TNBS instillation. The results obtained revealed that all probiotics assayed showed intestinal anti-inflammatory effects, macroscopically evidenced by a significant reduction in the colonic weight/length ratio. Only B. lactis showed a lower incidence of diarrhoea in comparison with untreated rats. Biochemically, all probiotics restored colonic glutathione levels, depleted as a consequence of the oxidative stress of the inflammatory process. Bifidobacterium lactis treatment reduced colonic tumour necrosis factor (TNF)-, production, and inducible nitric oxide synthase (iNOS) and cyclo-oxygenase-2 (COX-2) expression; L. acidophilus administration reduced colonic leukotriene B4 production and iNOS expression and L. casei intake was associated with a decrease in colonic COX-2 expression. Conclusion:, The three probiotics assayed have shown intestinal anti-inflammatory activity in the TNBS model of rat colitis, although each probiotic shows its own anti-inflammatory profile. Significance and Impact of the Study:, These probiotics could be considered as potential adjuvants in the treatment of inflammatory bowel disease, although more studies are required in order to demonstrate their efficacy in humans. [source] Protease-activated receptor-4 (PAR4): a role as inhibitor of visceral pain and hypersensitivityNEUROGASTROENTEROLOGY & MOTILITY, Issue 11 2009C. Augé Abstract, Protease-activated receptor-4 (PAR4) belongs to the family of receptors activated by the proteolytic cleavage of their extracellular N-terminal domain and the subsequent binding of the newly released N-terminus. While largely expressed in the colon, the role of PAR4 in gut functions has not been defined. We have investigated the effects of PAR4 agonist on colonic sensations and sensory neuron signalling, and its role in visceral pain. We observed that a single administration of the PAR4 agonist peptide (AYPGKF-NH2), but not the control peptide (YAPGKF-NH2) into the colon lumen of mice significantly reduced the visceromotor response to colorectal distension at different pressures of distension. Further, intracolonic administration of the PAR4 agonist, but not the control peptide, was able to significantly inhibit PAR2 agonist- and transcient receptor potential vanilloid-4 (TRPV4) agonist-induced allodynia and hyperalgesia in response to colorectal distension. Protease-activated receptor-4 was detected in sensory neurons projecting from the colon, and isolated from the dorsal root ganglia, where it co-expressed with PAR2 and TRPV4. In total sensory neurons, PAR4 agonist exposure inhibited free intracellular calcium mobilization induced by the pro-nociceptive agonists of PAR2 and TRPV4. Finally, PAR4 -deficient mice experienced increased pain behaviour in response to intracolonic administration of mustard oil, compared with wild-type littermates. These results show that PAR4 agonists modulate colonic nociceptive response, inhibit colonic hypersensitivity and primary afferent responses to pro-nociceptive mediators. Endogenous activation of PAR4 also plays a major role in controlling visceral pain. These results identify PAR4 as a previously unknown modulator of visceral nociception. [source] Pharmacokinetic characterization of a human immunodeficiency virus protease inhibitor, saquinavir, during ethanol intake in ratsBIOPHARMACEUTICS AND DRUG DISPOSITION, Issue 8 2003Nobuhito Shibata Abstract Throughout therapeutic drug monitoring of human immunodeficiency virus (HIV) protease inhibitors in HIV-infected patients, it was found that plasma concentrations of saquinavir (SQV) were reduced in patients who had a habit of alcohol intake during double protease therapy with SQV and ritonavir (RTV). This study confirmed the pharmacokinetic profiles of SQV during ethanol intake in rats. After oral administration of SQV alone (20 mg/kg) in rats prepared by free access to 15% ethanol solution for 14 days (day 14 rats), the area under the concentration vs time curves (AUC) showed a significant decrease (p<0.01) in comparison with control rats from 0.78±0.10 to 0.38±0.03 ,g h/ml. For intravenous administration of SQV alone (5 mg/kg) to day 14 rats, the total body clearance increased significantly by 1.4-fold (p<0.05), whereas for intracolonic administration of SQV alone, no significant differences in the values of pharmacokinetic parameters were found between control and day 14 rats. With RTV, which has the strongest inhibitory effect on the CYP3A enzyme of the current HIV protease inhibitors, the AUC values of SQV at RTV doses of 2 and 20 mg/kg in day 14 rats also decreased significantly (p<0.01) from 1.30±0.06 to 0.57±0.05 ,g h/ml and from 17.63±1.66 to 4.18±0.94 ,g h/ml, respectively, indicating that the degree of the decrease of AUC values after oral administration with RTV after ethanol intake was larger than the mono-therapy with SQV. This study showed that ethanol-intake decreases the bioavailability of SQV after oral administration alone or with RTV. These observations provide useful information for the treatment of HIV-infected patients when they receive a combination therapy with SQV and RTV, and arouse attention for the effects of alcohol intake. Copyright © 2003 John Wiley & Sons, Ltd. [source] |