Interpolymer Complexes (interpolymer + complex)

Distribution by Scientific Domains


Selected Abstracts


Interpolymer Complexes of Water-Soluble Nonionic Polysaccharides with Polycarboxylic Acids and Their Applications

MACROMOLECULAR BIOSCIENCE, Issue 6 2003
Zauresh S. Nurkeeva
Abstract Literature data as well as our own experimental results devoted to the complexation of polycarboxylic acids with various water-soluble polysaccharides (methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, starch, and dextran) by means of hydrogen bonding are systematized and analyzed. The specific peculiarities of interpolymer complexes based on polysaccharides-polycarboxylic acids are demonstrated. The perspectives for the application of these interpolymer complexes are considered. It was shown that these materials possess good biocompatibility and adhesive properties. The promising directions for further study of interpolymer complexes between polycarboxylic acids and nonionic polysaccharides as well as existing gaps in the knowledge in this field are pointed out. Formation of compact IPCs and hydrophilic interpolymer associates. [source]


AB-Block Copolymer with Moving B Blocks as a Model for Interpolymer Complexes

MACROMOLECULAR THEORY AND SIMULATIONS, Issue 5 2010
Olga S. Pevnaya
Abstract The conformational behavior of a single AB block copolymer is studied by Monte Carlo simulation. The A-A and A-B interactions have the character of excluded volume interactions while the B units attract each other; the attractive B blocks can move along the chain. The collapse transition of the chain with increasing attraction between the B units is analyzed. Intrachain separation of the A and B units takes place in the course of the chain collapse with the formation of "globule with a tail" conformations. The globule is formed by the attractive moving B blocks while the tail consists of the swollen A segments. The model of AB block copolymer with moving B blocks can describe the behavior of interpolymer complexes between a long macromolecule and shorter polymer chains. [source]


Thermosensitive noncovalently bonded block copolymerlike micelles from interpolymer complexes

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 24 2004
Dimitra Topouza
Abstract Interpolymer complexes between polystyrene- b -poly(2-vinylpyridine), (PS-P2VP), and poly(methacrylic acid) (PMAA), have been studied in dioxane. Dioxane is a good solvent for PS-P2VP copolymers but it is a nonsolvent for PMAA at room temperature. In this way noncovalent bonded micelles are formed after mixing the solutions of the polymers at 60 °C and then allowing them to cool at room temperature. Static and dynamic light scattering as well as viscosity measurements have been used to study the dependence of aggregate mass and size as a function of the molar ratio of functional groups in PS-P2VP/PMAA mixtures, as well as temperature. Plots of apparent average molecular weight and hydrodynamic radius of the aggregates versus amine to carboxyl group ratio show a maximum at a ratio close to one. The size of the aggregates decreases at higher ratios because of the formation of more stable micelles with smaller cores. In all cases rather compact structures were formed, as evidenced by viscometry. The mass of the aggregates was found to decrease by an increase in temperature while hydrodynamic radii were increased. This was attributed to the increase of the thermodynamic quality of the solvent toward PMAA as temperature increases. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6230,6237, 2004 [source]


Hydrogen-bonding interaction of an alternating maleic acid,vinyl acetate copolymer with poly(ethylene glycol), polyacrylamide and poly(N -isopropylacrylamide): a comparative study

POLYMER INTERNATIONAL, Issue 12 2003
C Vasile
Abstract The hydrogen-bonding interaction and interpolymer complex formation between an alternating maleic acid,vinyl acetate copolymer, (MAc- alt -VA) and poly(ethylene glycol) (PEG), polyacrylamide (PAM) or poly(N -isopropylacrylamide) (PNIPAM) in aqueous solution was potentiometrically and viscometrically investigated. MAc- alt -VA formed with PEG a strong hydrogen-bonding interpolymer complex with a compact structure, and while its interaction with PAM seems to be very weak, if any, the complex formed with PNIPAM is even stronger than that with PEG. This indicates a very important contribution of hydrophobic interaction to the formation of such hydrogen-bonding interpolymer complexes. Copyright © 2003 Society of Chemical Industry [source]


Thermosensitive noncovalently bonded block copolymerlike micelles from interpolymer complexes

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 24 2004
Dimitra Topouza
Abstract Interpolymer complexes between polystyrene- b -poly(2-vinylpyridine), (PS-P2VP), and poly(methacrylic acid) (PMAA), have been studied in dioxane. Dioxane is a good solvent for PS-P2VP copolymers but it is a nonsolvent for PMAA at room temperature. In this way noncovalent bonded micelles are formed after mixing the solutions of the polymers at 60 °C and then allowing them to cool at room temperature. Static and dynamic light scattering as well as viscosity measurements have been used to study the dependence of aggregate mass and size as a function of the molar ratio of functional groups in PS-P2VP/PMAA mixtures, as well as temperature. Plots of apparent average molecular weight and hydrodynamic radius of the aggregates versus amine to carboxyl group ratio show a maximum at a ratio close to one. The size of the aggregates decreases at higher ratios because of the formation of more stable micelles with smaller cores. In all cases rather compact structures were formed, as evidenced by viscometry. The mass of the aggregates was found to decrease by an increase in temperature while hydrodynamic radii were increased. This was attributed to the increase of the thermodynamic quality of the solvent toward PMAA as temperature increases. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6230,6237, 2004 [source]


Interpolymer Complexes of Water-Soluble Nonionic Polysaccharides with Polycarboxylic Acids and Their Applications

MACROMOLECULAR BIOSCIENCE, Issue 6 2003
Zauresh S. Nurkeeva
Abstract Literature data as well as our own experimental results devoted to the complexation of polycarboxylic acids with various water-soluble polysaccharides (methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, starch, and dextran) by means of hydrogen bonding are systematized and analyzed. The specific peculiarities of interpolymer complexes based on polysaccharides-polycarboxylic acids are demonstrated. The perspectives for the application of these interpolymer complexes are considered. It was shown that these materials possess good biocompatibility and adhesive properties. The promising directions for further study of interpolymer complexes between polycarboxylic acids and nonionic polysaccharides as well as existing gaps in the knowledge in this field are pointed out. Formation of compact IPCs and hydrophilic interpolymer associates. [source]


Temperature-Responsive Water-Soluble Copolymers Based on 2-Hydroxyethyl Acrylate and Butyl Acrylate

MACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 9 2007
Grigoriy A. Mun
Abstract Amphiphilic copolymers have been synthesised by free radical copolymerisation of 2-hydroxyethyl acrylate with butyl acrylate, the reactivity ratios of which indicate practically equal reactivity. The copolymers containing less than 30 mol-% of BA were soluble in water and exhibited a LCST in aqueous solutions. It was found that the interaction between these copolymers and poly(acrylic acid) in aqueous solutions resulted in the formation of interpolymer complexes stabilised by hydrogen bonds and hydrophobic interactions. This interaction was significantly affected by solution pH and led to modification of the temperature-responsive behaviour of the copolymers. [source]


AB-Block Copolymer with Moving B Blocks as a Model for Interpolymer Complexes

MACROMOLECULAR THEORY AND SIMULATIONS, Issue 5 2010
Olga S. Pevnaya
Abstract The conformational behavior of a single AB block copolymer is studied by Monte Carlo simulation. The A-A and A-B interactions have the character of excluded volume interactions while the B units attract each other; the attractive B blocks can move along the chain. The collapse transition of the chain with increasing attraction between the B units is analyzed. Intrachain separation of the A and B units takes place in the course of the chain collapse with the formation of "globule with a tail" conformations. The globule is formed by the attractive moving B blocks while the tail consists of the swollen A segments. The model of AB block copolymer with moving B blocks can describe the behavior of interpolymer complexes between a long macromolecule and shorter polymer chains. [source]


pH and salt effects on interpolymer complexation via hydrogen bonding in aqueous solutions

POLYMER INTERNATIONAL, Issue 9 2004
Dr Vitaliy V Khutoryanskiy
Abstract The effect of inorganic salts addition on the complex formation of poly(acrylic acid) with various non-ionic polymers such as poly(vinyl pyrrolidone), poly(acrylamide), poly(ethylene oxide), pol(vinyl methyl ether), poly(vinyl alcohol), poly(N -isopropylacrylamide), poly(2-hydroxyethyl vinyl ether), hydroxypropylcellulose and hydroxyethylcellulose has been studied in aqueous solutions. It was found that, depending on the nature of the polymers and pH medium, addition of inorganic salts could increase or decrease the critical pH values of complexation. A new classification of interpolymer complexes based on critical pH values and ionic strength effects is suggested. Copyright © 2004 Society of Chemical Industry [source]


Hydrogen-bonding interaction of an alternating maleic acid,vinyl acetate copolymer with poly(ethylene glycol), polyacrylamide and poly(N -isopropylacrylamide): a comparative study

POLYMER INTERNATIONAL, Issue 12 2003
C Vasile
Abstract The hydrogen-bonding interaction and interpolymer complex formation between an alternating maleic acid,vinyl acetate copolymer, (MAc- alt -VA) and poly(ethylene glycol) (PEG), polyacrylamide (PAM) or poly(N -isopropylacrylamide) (PNIPAM) in aqueous solution was potentiometrically and viscometrically investigated. MAc- alt -VA formed with PEG a strong hydrogen-bonding interpolymer complex with a compact structure, and while its interaction with PAM seems to be very weak, if any, the complex formed with PNIPAM is even stronger than that with PEG. This indicates a very important contribution of hydrophobic interaction to the formation of such hydrogen-bonding interpolymer complexes. Copyright © 2003 Society of Chemical Industry [source]