Interparticle Interactions (interparticle + interaction)

Distribution by Scientific Domains


Selected Abstracts


Photoluminescence effects on gold nano- particles modified by short single stranded DNA molecules

MATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, Issue 4 2009
O. Kysil
Gold-Nanopartikel; Einzelstrang DNA; sichtbare Photolumineszenz; Photosensor Abstract The concept for a function of gold nanoparticle photosensor based on gold nanoparticle optical properties, depending on the size and architecture of their self , assemblies, is revised from the studies of modified by short ssDNA (5.4 nm length) selected gold nanoparticle (8.6 nm diameter) assembling in biosuspensions. Biosensing effect, collective photoluminescence in visible range of different size 2D, 3D assemblies from these nanoparticles, is revealed due to their controlled assembling in biosuspesions, dependent on ssDNA conformation, that changes gold core capping and therefore a force of interparticle interaction. Nanophotosensor is characterized by intensive photoluminescence maxima in two regions of visible range for tested biosuspensions due to detected difference in the self - assemblies' architecture of gold nanoparticles with different gold core capping by the ssDNA molecules. The emission maxima are 4.2x103 pps and 4.1x104 pps in (525,780) nm and (780,920) nm regions mainly for 2D assemblies as nanowires and 3D assemblies as circle holms, correspondently, in DNA buffer suspensions with different biomolecules. The results are explained addressing photoluminescence of gold nanoparticle assemblies to system of discrete electron states in valence and conductivity bands for gold nanoparticle model. Photolumineszenz-Effekt auf Gold Nanopartikel vermittelt durch kurze Einzelstrang DNA Moleküle Das Konzept für die Funktion der Goldpartikel Nanophotosensoren basiert auf den optischen Eigenschaften der Gold Nanopartikel abhängig von der Größe und Architektur ihrer ,Self-Assemblies", und wird auf Basis von Studien von kurzen ssDNA (5.4 nm Länge) mit ausgewählten sich in Biosuspensionen versammelnden Gold Nanopartikeln (8.6 nm Durchmesser) revidiert. Der Biosensoreffekt, sichtbar durch die gesammelte Photolumineszenz im sichtbaren Spektrum von verschieden großen 2D und 3D-Aggregaten von diesen Nanopartikeln, wird wegen ihrer kontrollierten Ansammlung in Biosuspensionen, welche in Abhängigkeit zu den kurzen ssDNA Konformation, dem Ändern der monomolekularen Bedeckungsschicht des Goldkerns und somit durch eine Kraft der Teilchen-Wechselwirkung offenbart. Der Nanophotosensor ist durch zwei intensive Photolumineszenz-Maxima im Bereich des sichtbaren Spektrums für derart geprüfte Biosuspensionen wegen des meßbaren Unterschieds in der Selbstanordnung von Gold Nanopartikeln mit dem verschiedenen Goldkernbedeckungen durch die ssDNA Stränge charakterisiert: Emissionsmaxima liegen bei 4.2x103 pps und 4.1x104 pps in den Wellenlängenbereichen von (525,780) nm und (780,920) nm, jeweils hauptsächlich für 2D-Aggregate als Nanodrähte und 3D-Aggregate in kreisförmiger Anordnung in DNA-Puffersuspendierungen mit verschiedenen Biomolekülen. Die Ergebnisse werden Mithilfe der Adressierung der Photolumineszenz von Gold Nanopartikel-Aggregaten zu System von getrennten Elektronzuständen in Valenz und Leitungsbändern entsprechend den Gold Nanopartikel-Modellen erklärt. [source]


Pseudopotential theory of a partially ionized hydrogen plasma

CONTRIBUTIONS TO PLASMA PHYSICS, Issue 5-6 2003
Yu.V. Arkhipov
Abstract In the framework of the BBGKY hierarchy the main features of interparticle interactions in a partially ionized hydrogen plasma are extensively studied. The theory developed is quite analogous to the Debye-Hückel approximation of a fully ionized plasma. (© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Small-angle neutron and X-ray scattering of dispersions of oleic-acid-coated magnetic iron particles

JOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 6 2004
Karen Butter
This paper describes the characterization of dispersions of oleic-acid-coated magnetic iron particles by small-angle neutron and X-ray scattering (SANS and SAXS). Both oxidized and non-oxidized dilute samples were studied by SANS at different contrasts. The non-oxidized samples are found to consist of non-interacting superparamagnetic single dipolar particles, with a lognormal distribution of iron cores, surrounded by a surfactant shell, which is partially penetrated by solvent. This model is supported by SAXS measurements on the same dispersion. Small iron particles are expected to oxidize upon exposure to air. SANS was used to study the effect of this oxidation, both on single particles, as well as on interparticle interactions. It is found that on exposure to air, a non-magnetic oxide layer is formed around the iron cores, which causes an increase of particle size. In addition, particles are found to aggregate upon oxidation, presumably because the surfactant density on the particle surfaces is decreased. [source]


Electrostatic energies and forces computed without explicit interparticle interactions: A linear time complexity formulation

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 8 2005
Robert J. Petrella
Abstract A rapid method for the calculation of the electrostatic energy of a system without a cutoff is described in which the computational time grows linearly with the number of particles or charges. The inverse of the distance is approximated as a polynomial, which is then transformed into a function whose terms involve individual particles, instead of particle pairs, by a partitioning of the double sum. In this way, the electrostatic energy that is determined by the interparticle interactions is obtained without explicit calculation of these interactions. For systems of positive charges positioned on a face-centered cubic lattice, the calculation of the energy by the new method is shown to be faster than the calculation of the exact energy, in many cases by an order of magnitude, and to be accurate to within 1,2%. The application of this method to increase the accuracy of conventional truncation-based calculations in condensed-phase systems is also demonstrated by combining the approximated long-range electrostatic interactions with the exact short-range interactions in a "hybrid" calculation. For a 20-Å sphere of water molecules, the forces are shown to be six times as accurate using this hybrid method as those calculated with conventional truncation of the electrostatic energy function at 12 Å. This is accomplished with a slight increase in speed, and with a sevenfold increase in speed relative to the exact all-pair calculation. Structures minimized with the hybrid function are shown to be closer to structures minimized with an exact all-pair electrostatic energy function than are those minimized with a conventional 13-Å cutoff-based electrostatic energy function. Comparison of the energies and forces calculated with the exact method illustrate that the absolute errors obtained with standard truncation can be very large. The extension of the current method to other pairwise functions as well as to multibody functions, is described. © 2005 Wiley Periodicals, Inc. J Comput Chem 26: 755,787, 2005 [source]


Effect of molecular weight of poly(N -isopropyl acrylamide) temperature-sensitive flocculants on dewatering

AICHE JOURNAL, Issue 8 2009
Haihong Li
Abstract The influence of molecular weight (MW) and dose of Poly(N-isopropyl acrylamide) (PNIPAM) (temperature-sensitive flocculant) on sedimentation rate, sediment density, and supernatant clarity of silica suspensions was investigated. The addition of PNIPAM resulted in rapid sedimentation (T > critical solution temperature, CST) and low sediment moisture (T < CST). Higher MW polymers resulted in more effective flocculation and sediment consolidation. At 10 ppm, PNIPAM (3.6 million Da) produced 20 m/h settling rate and 48 vol % solids sediment density, whereas 0.23 million Da polymer produced 0.1 m/h settling rate. PNIPAM produces effective flocculation and consolidation by cycling the interparticle interactions between repulsion and attraction as temperature is cycled around the CST. The change in temperature produces a hydrophilic/hydrophobic transition of the polymer, influencing adsorption onto the surface and the inter-particle forces. Conventional polyacrylamide flocculants (not influenced by temperature), cannot be used to produce both rapid sedimentation and dense sediments. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source]


Phase Behavior, 3-D Structure, and Rheology of Colloidal Microsphere,Nanoparticle Suspensions

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 6 2006
Summer K. Rhodes
A new route for tailoring the behavior of colloidal suspensions through nanoparticle additions is reviewed. Specifically, the interparticle interactions, phase behavior, 3-D structure, and rheological properties of microsphere,nanoparticle mixtures that possess both high charge and size asymmetry are described. Negligibly charged microspheres, which flocculate when suspended alone, undergo a remarkable stabilizing transition upon the addition of highly charged nanoparticles. The formation of a dynamic nanoparticle halo around each colloid induces an effective repulsion between the microspheres that promotes their stability. With increasing nanoparticle concentration, the colloids again undergo flocculation because of the emergence of an effective microsphere attraction, whose magnitude exhibits a quadratic dependence on nanoparticle volume fraction. The broader impact of these observations on colloidal stabilization and assembly of advanced ceramics is highlighted. [source]