Home About us Contact | |||
Internal Loading (internal + loading)
Selected AbstractsLake responses to reduced nutrient loading , an analysis of contemporary long-term data from 35 case studiesFRESHWATER BIOLOGY, Issue 10 2005ERIK JEPPESEN Summary 1. This synthesis examines 35 long-term (5,35 years, mean: 16 years) lake re-oligotrophication studies. It covers lakes ranging from shallow (mean depth <5 m and/or polymictic) to deep (mean depth up to 177 m), oligotrophic to hypertrophic (summer mean total phosphorus concentration from 7.5 to 3500 ,g L,1 before loading reduction), subtropical to temperate (latitude: 28,65°), and lowland to upland (altitude: 0,481 m). Shallow north-temperate lakes were most abundant. 2. Reduction of external total phosphorus (TP) loading resulted in lower in-lake TP concentration, lower chlorophyll a (chl a) concentration and higher Secchi depth in most lakes. Internal loading delayed the recovery, but in most lakes a new equilibrium for TP was reached after 10,15 years, which was only marginally influenced by the hydraulic retention time of the lakes. With decreasing TP concentration, the concentration of soluble reactive phosphorus (SRP) also declined substantially. 3. Decreases (if any) in total nitrogen (TN) loading were lower than for TP in most lakes. As a result, the TN : TP ratio in lake water increased in 80% of the lakes. In lakes where the TN loading was reduced, the annual mean in-lake TN concentration responded rapidly. Concentrations largely followed predictions derived from an empirical model developed earlier for Danish lakes, which includes external TN loading, hydraulic retention time and mean depth as explanatory variables. 4. Phytoplankton clearly responded to reduced nutrient loading, mainly reflecting declining TP concentrations. Declines in phytoplankton biomass were accompanied by shifts in community structure. In deep lakes, chrysophytes and dinophytes assumed greater importance at the expense of cyanobacteria. Diatoms, cryptophytes and chrysophytes became more dominant in shallow lakes, while no significant change was seen for cyanobacteria. 5. The observed declines in phytoplankton biomass and chl a may have been further augmented by enhanced zooplankton grazing, as indicated by increases in the zooplankton : phytoplankton biomass ratio and declines in the chl a : TP ratio at a summer mean TP concentration of <100,150 ,g L,1. This effect was strongest in shallow lakes. This implies potentially higher rates of zooplankton grazing and may be ascribed to the observed large changes in fish community structure and biomass with decreasing TP contribution. In 82% of the lakes for which data on fish are available, fish biomass declined with TP. The percentage of piscivores increased in 80% of those lakes and often a shift occurred towards dominance by fish species characteristic of less eutrophic waters. 6. Data on macrophytes were available only for a small subsample of lakes. In several of those lakes, abundance, coverage, plant volume inhabited or depth distribution of submerged macrophytes increased during oligotrophication, but in others no changes were observed despite greater water clarity. 7. Recovery of lakes after nutrient loading reduction may be confounded by concomitant environmental changes such as global warming. However, effects of global change are likely to run counter to reductions in nutrient loading rather than reinforcing re-oligotrophication. [source] Internal loading: A new solution to an old problem in aquatic sciencesLAKES & RESERVOIRS: RESEARCH AND MANAGEMENT, Issue 1 2004Lars Håkanson Abstract Internal loading has long been regarded as an ,Achilles heel' in aquatic science and management. Internal loading is of fundamental importance in large and shallow lakes, where even low wind velocities can cause a considerable resuspension of matter deposited on the lake bed. The resuspended matter, and the chemical substances bound to the resuspended matter, will influence almost all processes in the aquatic ecosystem, such as water clarity and depth of the photic zone, and hence, primary and secondary production. If the sediments are contaminated, it will increase the concentrations of harmful substances in water and sediments and the potential ecosystem effects related to such concentrations. This paper presents an overview of the processes regulating bottom dynamic conditions in lakes (erosion, transport, accumulation), provides examples on the role of internal loading within the context of limnology and water management, and presents a new, general approach to quantify internal loading from sediments in lakes. The new approach has been critically tested, being a key factor behind the increase in predictive power of a new generation of lake models meant to be used for practical water management. Internal loading of any water pollutant depends on sedimentation. Sedimentation in this approach is presented as a function of two substance-specific variables, including the fall velocity of the carrier-particles and the particulate fraction (which, by definition, is the only fraction of a water pollutant that can settle out on the lake bed), and three generic variables, including mean depth, suspended particulate matter and ET-areas (areas of erosion and transport). On ET-areas there is, by definition, a discontinuous sedimentation of materials that settles according to Stokes' law. Basically, internal loading is the sum of advective (resuspension) and diffusive transport from the sediments. Resuspension from ET-areas is given as a function of the lake form (a new algorithm based on the volume development) and the age of ET-sediments. [source] Undesirable side-effects of water hyacinth control in a shallow tropical reservoirFRESHWATER BIOLOGY, Issue 6 2007DENISE DE C. BICUDO Summary 1. Based on a comprehensive data set collected monthly during 8 years (1997,2004), we evaluated the effects of mechanical removal of Eichhornia crassipes on the limnological characteristics and algal biomass of a polymictic shallow tropical reservoir. 2. Interrupted time series analyses indicated that the limnological responses to macrophyte removal can be classified as an ,abrupt permanent impact' implying that the overall mean of the time-series shifted promptly after intervention. These analyses indicated a significant increase for pH, total phosphorus, total phytoplankton and cyanobacterial biomass, and a decrease in water transparency and CO2 concentrations in the surface water; also, the increase in water stability, increase of bottom soluble reactive phosphorus (SRP) and decrease in bottom oxygen levels. 3. Cyclic anoxic periods previously observed during springs and summers were replaced by a persistent period of anoxic conditions in the sediment overlying water. Anoxic conditions were suitable for SRP release from sediments. Heavy cyanobacterial blooms became more persistent, maximum biomass (4229 mm3 L,1) was 30 times larger, the blooms frequently reached 2 m and sometimes the bottom of the reservoir, contrasting to the preremoval period in which it reached at most 1 m deep. 4. The long-term P dynamics in the system, initially driven by allochthonous nutrient loadings were replaced by internal ecological processes. Water hyacinth removal markedly accelerated the process of eutrophication due to internal feedback mechanisms, leading to a switch to a more turbid state. Biological feedback mechanisms were driven by cyanobacterial blooms by enhancing water stability, oxygen anoxia at the bottom and by increasing suitable conditions for P internal loading. These data support the hypothesis of the role of cyanobacterial blooms as an important factor impairing water quality and driving the ecosystem towards a stable degraded state. 5. These findings have important implications for the restoration of shallow stratifying eutrophic lakes, as the alternative degraded state is most likely to occur when compared with their non-stratifying counterparts. Moreover, feedback mechanisms in tropical and subtropical shallow lakes seem to be stronger than in temperate ones, as stratification events are more likely to occur over the year, intensifying system resilience to restorative strategies. [source] Seasonal response of nutrients to reduced phosphorus loading in 12 Danish lakesFRESHWATER BIOLOGY, Issue 10 2005MARTIN SØNDERGAARD Summary 1.,Concentrations of phosphorus, nitrogen and silica and alkalinity were monitored in eight shallow and four deep Danish lakes for 13 years following a phosphorus loading reduction. The aim was to elucidate the seasonal changes in nutrient concentrations during recovery. Samples were taken biweekly during summer and monthly during winter. 2.,Overall, the most substantive changes in lake water concentrations were seen in the early phase of recovery. However, phosphorus continued to decline during summer as long as 10 years after the loading reduction, indicating a significant, albeit slow, decline in internal loading. 3.,Shallow and deep lakes responded differently to reduced loading. In shallow lakes the internal phosphorus release declined significantly in spring, early summer and autumn, and only non-significantly so in July and August. In contrast, in deep lakes the largest reduction occurred from May to August. This difference may reflect the much stronger benthic pelagic-coupling and the lack of stratification in shallow lakes. 4.,Nitrogen only showed minor changes during the recovery period, while alkalinity increased in late summer, probably conditioned by the reduced primary production, as also indicated by the lower pH. Silica tended to decline in winter and spring during the study period, probably reflecting a reduced release of silica from the sediment because of enhanced uptake by benthic diatoms following the improved water transparency. 5.,These results clearly indicate that internal loading of phosphorus can delay lake recovery for many years after phosphorus loading reduction, and that lake morphometry (i.e. deep versus shallow basins) influences the patterns of change in nutrient concentrations on both a seasonal and interannual basis. [source] Approximation method for high-degree harmonics in normal mode modellingGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2002R. E. M. Riva Summary For some loading applications, the normal modes approach to the viscoelastic relaxation of a spherical earth requires the use of spherical harmonics up to a high degree. Examples include postseismic deformation (internal loading) and sea level variations due to glacial isostatic adjustment (external loading). In the case of postseismic modelling, the convergence of the solution, given as a spherical harmonic expansion series, is directly dependent on loading depth and requires several thousands of terms for shallow earthquake sources. The particular structure of the analytical fundamental solutions used in normal mode techniques usually does not allow a straightforward calculation, since numerical problems can readily occur due to the stiffness of the matrices used in the propagation routines. Here we show a way of removing this stiffness problem by approximating the fundamental matrix solutions, followed by a rescaling procedure, in this way we can virtually go up to whatever harmonic degree is required. [source] Planning and controlling cooperating robots through distributed impedanceJOURNAL OF FIELD ROBOTICS (FORMERLY JOURNAL OF ROBOTIC SYSTEMS), Issue 6 2002Jérôme Szewczyk This article presents distributed impedance as a new approach for multiple robot system control. In this approach, each cooperating manipulator is controlled by an independent impedance controller. In addition, along selected degrees of freedom, force control is achieved through an external loop, to improve control of the object's internal loading. Extensive stability analysis is performed, based on a realistic model that includes robot impedance and object dynamics. Experiments are performed using two cooperating industrial robots holding an object through point contacts. Force and position control actions are suitably dispatched to achieve both internal loading control and object position control. Individual impedance parameters are specified according to the theoritical stability criterion. The performance of the system is demonstrated for transportation and contact tasks. © 2002 Wiley Periodicals, Inc. [source] Internal loading: A new solution to an old problem in aquatic sciencesLAKES & RESERVOIRS: RESEARCH AND MANAGEMENT, Issue 1 2004Lars Håkanson Abstract Internal loading has long been regarded as an ,Achilles heel' in aquatic science and management. Internal loading is of fundamental importance in large and shallow lakes, where even low wind velocities can cause a considerable resuspension of matter deposited on the lake bed. The resuspended matter, and the chemical substances bound to the resuspended matter, will influence almost all processes in the aquatic ecosystem, such as water clarity and depth of the photic zone, and hence, primary and secondary production. If the sediments are contaminated, it will increase the concentrations of harmful substances in water and sediments and the potential ecosystem effects related to such concentrations. This paper presents an overview of the processes regulating bottom dynamic conditions in lakes (erosion, transport, accumulation), provides examples on the role of internal loading within the context of limnology and water management, and presents a new, general approach to quantify internal loading from sediments in lakes. The new approach has been critically tested, being a key factor behind the increase in predictive power of a new generation of lake models meant to be used for practical water management. Internal loading of any water pollutant depends on sedimentation. Sedimentation in this approach is presented as a function of two substance-specific variables, including the fall velocity of the carrier-particles and the particulate fraction (which, by definition, is the only fraction of a water pollutant that can settle out on the lake bed), and three generic variables, including mean depth, suspended particulate matter and ET-areas (areas of erosion and transport). On ET-areas there is, by definition, a discontinuous sedimentation of materials that settles according to Stokes' law. Basically, internal loading is the sum of advective (resuspension) and diffusive transport from the sediments. Resuspension from ET-areas is given as a function of the lake form (a new algorithm based on the volume development) and the age of ET-sediments. [source] |