Intermediate Activities (intermediate + activity)

Distribution by Scientific Domains


Selected Abstracts


Decreased activities of mitochondrial respiratory chain complexes in non-mitochondrial respiratory chain diseases

DEVELOPMENTAL MEDICINE & CHILD NEUROLOGY, Issue 2 2006
Joannie Hui MBBS
The aim of this study was to illustrate the difficulties in establishing a diagnosis of mitochondrial respiratory chain (MRC) disorders based on clinical grounds in combination with intermediate activities of the MRC enzyme complexes. We reviewed retrospectively all medical and laboratory records of patients initially considered likely to have MRC disorders on clinical grounds, and subsequently diagnosed with other disorders (n=20; 11 males, 9 females). Data were retrieved from hospital records, referral letters, and results of enzymatic analysis at a reference laboratory. Clinical symptoms included developmental delay, epilepsy, hypotonia, movement disorder, spastic quadriplegia, tetany, microcephaly, visual problems, carpopedal spasms, dysmorphism, hearing loss, muscle weakness and rhabdomyolysis, and fulminant hepatitis. Blood and cerebrospinal fluid lactate levels were elevated in 13/20 and 9/20 respectively. One or more MRC complex activities (expressed as ratios relative to citrate synthase and/or complex II activity) were less than 50% of control mean activity in 11/20 patients (including patients with deficiencies of pyruvate dehydrogenase complex, pantothenate kinase, holocarboxylase synthetase, long-chain hydroxy acyl-CoA dehydrogenase, molybdenum co-factor, and neonatal haemochromatosis). One patient had a pattern suggestive of mitochondrial proliferation. We conclude that intermediate results of MRC enzymes should be interpreted with caution and clinicians should be actively looking for other underlying diagnoses. [source]


Highlights of Papers in Clinical Investigations Section: Depressive Disorder as a Predictor of Physical Disability in Old Age

JOURNAL OF AMERICAN GERIATRICS SOCIETY, Issue 3 2001
S-L Kivela
In this longitudinal study with a 5-year follow-up, 786 subjects were assessed for the impact of depression on physical disability. Depression present at baseline did not predict lowering of functional abilities during the follow-up period. However, new-onset depression that was relapsing or long-term in course was associated with increased risk for lowering functional abilities, even when age, sociodemographic factors, physical diseases, and baseline disabilities were controlled. Depressed older people should be placed on a program to maintain their functional abilities through physical exercise and training in activities of daily living and intermediate activities of daily living. [source]


Identification of in vitro phosphorylation sites in the Arabidopsis thaliana somatic embryogenesis receptor-like kinases

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 2 2009
Rumyana Karlova
Abstract The Arabidopsis thaliana somatic embryogenesis receptor-like kinase (SERK) family consists of five leucine-rich repeat receptor-like kinases (LRR-RLKs) with diverse functions such as brassinosteroid insensitive 1 (BRI1)-mediated brassinosteroid perception, development and innate immunity. The autophosphorylation activity of the kinase domains of the five SERK proteins was compared and the phosphorylated residues were identified by LC-MS/MS. Differences in autophosphorylation that ranged from high activity of SERK1, intermediate activities for SERK2 and SERK3 to low activity for SERK5 were noted. In the SERK1 kinase the C-terminally located residue Ser-562 controls full autophosphorylation activity. Activation loop phosphorylation, including that of residue Thr-462 previously shown to be required for SERK1 kinase activity, was not affected. In vivo SERK1 phosphorylation was induced by brassinosteroids. Immunoprecipitation of CFP-tagged SERK1 from plant extracts followed by MS/MS identified Ser-303, Thr-337, Thr-459, Thr-462, Thr-463, Thr-468, and Ser-612 or Thr-613 or Tyr-614 as in vivo phosphorylation sites of SERK1. Transphosphorylation of SERK1 by the kinase domain of the main brassinosteroid receptor BRI1 occurred only on Ser-299 and Thr-462. This suggests both intra- and intermolecular control of SERK1 kinase activity. Conversely, BRI1 was transphosphorylated by the kinase domain of SERK1 on Ser-887. BRI1 kinase activity was not required for interaction with the SERK1 receptor in a pull down assay. [source]


Functional analysis of polyomavirus BK non-coding control region quasispecies from kidney transplant recipients

JOURNAL OF MEDICAL VIROLOGY, Issue 11 2009
Gunn-Hege Olsen
Abstract Replication of the human polyomavirus BK (BKV) in renal tubular epithelial cells causes viruria and BKV-nephropathy in kidney transplant recipients. Following prolonged high-level BKV replication, rearrangement of the archetype non-coding control region (NCCR) leads to a mixture of BKV variants. The aim of this study was to compare potential functional differences of 12 rearranged (rr)-NCCR variants with the archetype (ww)-NCCR (WWT) found in allograft biopsies or urine from three kidney transplant recipients including two with BKV-nephropathy. Twelve different rr-NCCRs and one archetype ww-NCCR were inserted between the early and late protein coding region of BKV(Dunlop) to make recombinant BKV genomes for transfection into Vero cells. Immunoblotting, immunofluorescence staining, and quantitative PCR demonstrated that viral protein expression and extracellular BKV loads of 10 rr-NCCR variants were similar or higher than observed for the ww-NCCR BKV. Two rr-NCCR variants (RH-2 and RH-19) were non-functional. The functional rr-NCCRs produced infectious progeny successfully infecting primary renal proximal tubular epithelial cells. The number of infected cells and extracellular BKV loads corresponded to the activity seen in Vero cells. Three rr-NCCR variants (RH-1, RH-10, RH-13) only gave rise to a few infected cells similar to ww-NCCR, whereas seven variants had intermediate activity (RH-5, RH-6, RH-8, RH-9, RH-11) or high replication activity (RH-7 and RH-18) with several hundred infected cells per well. The results indicate that both functional and non-functional BKV rr-NCCR variants arise during BKV replication in kidney transplant recipients and that most functional rr-NCCR variants confer a higher replication capacity than archetype ww-NCCR. J. Med. Virol. 81:1959,1967, 2009. © 2009 Wiley-Liss, Inc. [source]


Alkali insoluble glucan extracted from Acremonium diospyri is a more potent immunostimulant in the Indian White Shrimp, Fenneropenaeus indicus than alkali soluble glucan

AQUACULTURE RESEARCH, Issue 11 2009
Abdulaziz Anas
Abstract Effect of an extraction method on the structure of glucan and its immunostimulatory response in Fenneropenaeus indicus was investigated. Here we extracted alkali insoluble glucan (AIG) and alkali soluble glucan (ASG) from a filamentous fungi Acremonium diospyri following alkali,acid hydrolysis and the sodium hypochlorite oxidation and dimethyl sulphoxide extraction method respectively. Structural analysis showed that 85% of glucan in AIG was a (1,3)-,- d -glucan and it increased the prophenoloxidase and reactive oxygen intermediate activity when administered to F. indicus. On the other hand, ASG, which contained 93% (1,3)-,-glucan, did not induce significant immune response in shrimp. Here we report that the difference in immunostimulatory potential between AIG and ASG is due to the difference in the percentage of (1,3)-,- d -glucans present in each preparation, which varies with the method of extraction employed. Also our observations suggest that glucan can be used as a potential immunostimulant to shrimp, provided it contains (1,3)-,- d -glucan as the major fraction. [source]


Functional response of leukaemic blasts to stromal cell-derived factor-1 correlates with preferential expression of the chemokine receptor CXCR4 in acute myelomonocytic and lymphoblastic leukaemia

BRITISH JOURNAL OF HAEMATOLOGY, Issue 3 2000
Robert Möhle
The chemokine stromal cell-derived factor-1 (SDF-1) that is released by bone marrow (BM) stromal cells and contributes to stem cell homing may also play a role in the trafficking of leukaemic cells. We analysed SDF-1-induced intracellular calcium fluxes in leukaemic blasts from the peripheral blood of patients with newly diagnosed acute myeloid leukaemia (AML) and lymphoblastic leukaemia (B-lineage ALL), determined the effect of BM stromal cell-conditioned medium on in vitro transendothelial migration (TM) and measured expression of the SDF-1 receptor, CXCR4, by flow cytometry. AML FAB M1/2 blasts did not show calcium fluxes and TM was not stimulated. In myelomonocytic AML (M4/5), however, SDF-1 induced significant calcium fluxes and TM was increased twofold by the conditioned medium. M3 and M4 blasts with eosinophilia (M4eo) showed intermediate activity and M6 blasts showed no functional activity. In ALL, strong calcium fluxes and increased TM (2.5-fold) were observed. Accordingly, expression of CXCR4 was low in undifferentiated (M0) AML, myeloid (M1/2) AML and erythroid (M6) AML, but high [mean fluorescence (MF) > 50] in promyelocytic (M3) AML, myelomonocytic (M4/5) AML and B-lineage ALL. We conclude that, in AML, SDF-1 is preferentially active in myelomonocytic blasts as a result of differentiation-related expression of CXCR4. Functional activity of SDF-1 and high expression of CXCR4 in B-lineage ALL is in accordance with the previously described activity of SDF-1 in early B cells. SDF-1 may contribute to leukaemic marrow infiltration, as suggested by increased CXCR4 expression and migratory response in BM-derived blasts compared with circulating cells. [source]