Intergalactic Medium (intergalactic + medium)

Distribution by Scientific Domains

Selected Abstracts

Searching for the missing baryons in theWarm-Hot Intergalactic Medium

X. Barcons
Abstract At low redshift (z < 2), almost half of the baryons in the Universe are not found in bound structures like galaxies and clusters and therefore most likely reside in a Warm-Hot Intergalactic Medium (WHIM), as predicted by simulations. Attempts to detect WHIM filaments at cosmological distances in absorption towards bright background sources have yielded controversial results that I review here. I argue that a secure detection of absorption features by the WHIM is at the limit of the XMM-Newton capabilities, but feasible. A proper characterisation of the whole WHIM belongs to the realm of future X-ray missions. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]

Modification of the 21-cm power spectrum by X-rays during the epoch of reionization

L. Warszawski
ABSTRACT We incorporate a contribution to reionization from X-rays within analytic and seminumerical simulations of the 21-cm signal arising from neutral hydrogen during the epoch of reionization. The relatively long X-ray mean free path (MFP) means that ionizations due to X-rays are not subject to the same density bias as UV ionizations, resulting in a substantive modification to the statistics of the 21-cm signal. We explore the impact that X-ray ionizations have on the power spectrum (PS) of 21-cm fluctuations by varying both the average X-ray MFP and the fractional contribution of X-rays to reionization. In general, prior to the epoch when the intergalactic medium (IGM) is dominated by ionized regions (H ii regions), X-ray-induced ionization enhances fluctuations on spatial scales smaller than the X-ray MFP, provided that X-ray heating does not strongly suppress galaxy formation. Conversely, at later times when H ii regions dominate, small-scale fluctuations in the 21-cm signal are suppressed by X-ray ionization. Our modelling also shows that the modification of the 21-cm signal due to the presence of X-rays is sensitive to the relative scales of the X-ray MFP and the characteristic size of H ii regions. We therefore find that X-rays imprint an epoch and scale-dependent signature on the 21-cm PS, whose prominence depends on fractional X-ray contribution. The degree of X-ray heating of the IGM also determines the extent to which these features can be discerned. We further show that the presence of X-rays smoothes out the shoulder-like signature of H ii regions in the 21-cm PS. For example, a 10 per cent contribution to reionization from X-rays translates to a 20,30 per cent modulation in the 21-cm PS across the scale of H ii regions. We show that the Murchison Widefield Array will have sufficient sensitivity to detect this modification of the PS, so long as the X-ray photon MFP falls within the range of scales over which the array is most sensitive (,0.1 Mpc,1). In cases in which this MFP takes a much smaller value, an array with larger collecting area would be required. As a result, an X-ray contribution to reionization has the potential to substantially complicate analysis of the 21-cm PS. On the other hand, a combination of precision measurements and modelling of the 21-cm PS promises to provide an avenue for investigating the role and contribution of X-rays during reionization. [source]

Is AGN feedback necessary to form red elliptical galaxies?

A. Khalatyan
ABSTRACT We have used the smoothed particle hydrodynamics (SPH) code gadget-2 to simulate the formation of an elliptical galaxy in a group-size cosmological dark matter halo with mass Mhalo, 3 × 1012 h,1 M, at z= 0. The use of a stellar population synthesis model has allowed us to compute magnitudes, colours and surface brightness profiles. We have included a model to follow the growth of a central black hole and we have compared the results of simulations with and without feedback from active galactic nuclei (AGN). We have studied the interplay between cold gas accretion and merging in the development of galactic morphologies, the link between colour and morphology evolution, the effect of AGN feedback on the photometry of early-type galaxies, the redshift evolution in the properties of quasar hosts, and the impact of AGN winds on the chemical enrichment of the intergalactic medium (IGM). We have found that the early phases of galaxy formation are driven by the accretion of cold filamentary flows, which form a disc galaxy at the centre of the dark matter halo. Disc star formation rates in this mode of galaxy growth are about as high as the peak star formation rates attained at a later epoch in galaxy mergers. When the dark matter halo is sufficiently massive to support the propagation of a stable shock, the gas in the filaments is heated to the virial temperature, cold accretion is shut down, and the star formation rate begins to decline. Mergers transform the spiral galaxy into an elliptical one, but they also reactivate star formation by bringing gas into the galaxy. Without a mechanism that removes gas from the merger remnants, the galaxy ends up with blue colours, which are atypical for its elliptical morphology. We have demonstrated that AGN feedback can solve this problem even with a fairly low heating efficiency. Our simulations support a picture where AGN feedback is important for quenching star formation in the remnant of wet mergers and for moving them to the red sequence. This picture is consistent with recent observational results, which suggest that AGN hosts are galaxies in migration from the blue cloud to the red sequence on the colour,magnitude diagram. However, we have also seen a transition in the properties of AGN hosts from blue and star forming at z, 2 to mainly red and dead at z, 0. Ongoing merging is the primary but not the only triggering mechanism for luminous AGN activity. Quenching by AGN is only effective after the cold filaments have dried out, since otherwise the galaxy is constantly replenished with gas. AGN feedback also contributes to raising the entropy of the hot IGM by removing low-entropy tails vulnerable to developing cooling flows. We have also demonstrated that AGN winds are potentially important for the metal enrichment of the IGM a high redshift. [source]

Redshifted 21-cm observations of high-redshift quasar proximity zones

J. Stuart B. Wyithe
ABSTRACT The introduction of low-frequency radio arrays is expected to revolutionize the study of the reionization epoch. Observation of the contrast in redshifted 21-cm emission between a large H ii region and the surrounding neutral intergalactic medium (IGM) will be the simplest and most easily interpreted signature. However, the highest redshift quasars known are thought to reside in an ionized IGM. Using a semi-analytic model we describe the redshifted 21-cm signal from the IGM surrounding quasars discovered using the i -drop-out technique (i.e. quasars at z, 6). We argue that while quasars at z < 6.5 seem to reside in the post-overlap IGM, they will still provide valuable probes of the late stages of the overlap era because the light-travel time across a quasar proximity zone should be comparable to the duration of overlap. For redshifted 21-cm observations within a 32-MHz bandpass, we find that the subtraction of a spectrally smooth foreground will not remove spectral features due to the proximity zone. These features could be used to measure the neutral hydrogen content of the IGM during the late stages of reionization. The density of quasars at z, 6 is now well constrained. We use the measured quasar luminosity function to estimate the prospects for discovery of high-redshift quasars in fields that will be observed by the Murchison Widefield Array. [source]

Ly, leaks and reionization

Longlong Feng
ABSTRACT Ly, absorption spectra of QSOs at redshifts z, 6 show complete Gunn,Peterson absorption troughs (dark gaps) separated by tiny leaks. The dark gaps are from the intergalactic medium (IGM) where the density of neutral hydrogen are high enough to produce almost saturated absorptions, however, where the transmitted leaks come from is still unclear so far. We demonstrate that leaking can originate from the lowest density voids in the IGM as well as the ionized apatches around ionizing sources using semi-analytical simulations. If leaks are produced in lowest density voids, the IGM must already be highly ionized, and the ionizing background should be almost uniform; in contrast, if leaks come from ionized patches, the neutral fraction of IGM should be still high, and the ionizing background is significantly inhomogeneous. Therefore, the origin of leaking is crucial to determining the epoch of inhomogeneous-to-uniform transition of the ionizing photon background. We show that the origin could be studied with the statistical features of leaks. Actually, Ly, leaks can be well defined and described by the equivalent width W and the full width of half-area WH, both of which are less contaminated by instrumental resolution and noise. It is found that the distributions of W and WH of Ly, leaks are sensitive to the modelling of the ionizing background. We consider four representative models: uniform ionizing background (model 0), the photoionization rate of neutral hydrogen ,H i and the density of IGM are either linearly correlated (model I), or anticorrelated (model II), and ,H i is correlated with high-density peaks containing ionizing sources (model III). Although all of these models can match to the mean of the observed effective optical depth of the IGM at z, 6, the distributions of W and WH are very different from each other. Consequently, the leak statistics provides an effective tool to probe the evolutionary history of reionization at z, 5,6.5. Similar statistics will also be applicable to the reionization of He ii at z, 3 [source]

Reionization bias in high-redshift quasar near-zones

J. Stuart B. Wyithe
ABSTRACT Absorption spectra of high-redshift quasars exhibit an increasingly thick Ly, forest, suggesting that the fraction of neutral hydrogen in the intergalactic medium (IGM) is increasing towards z, 6. However, the interpretation of these spectra is complicated by the fact that the Ly, optical depth is already large for neutral hydrogen fractions in excess of 10,4, and also because quasars are expected to reside in dense regions of the IGM. We present a model for the evolution of the ionization state of the IGM which is applicable to the dense, biased regions around high-redshift quasars as well as more typical regions in the IGM. We employ a cold dark matter based model in which the ionizing photons for reionization are produced by star formation in dark matter haloes spanning a wide range of masses, combined with numerical radiative transfer simulations which model the resulting opacity distribution in quasar absorption spectra. With an appropriate choice for the parameter which controls the star formation efficiency, our model is able to simultaneously reproduce the observed Ly, forest opacity at 4 < z < 6, the ionizing photon mean-free-path at z, 4 and the rapid evolution of highly ionized near-zone sizes around high-redshift quasars at 5.8 < z < 6.4. In our model, reionization extends over a wide redshift range, starting at z, 10 and completing as H ii regions overlap at z, 6,7. We find that within 5 physical Mpc of a high-redshift quasar, the evolution of the ionization state of the IGM precedes that in more typical regions by around 0.3 redshift units. More importantly, when combined with the rapid increase in the ionizing photon mean-free-path expected shortly after overlap, this offset results in an ionizing background near the quasar which exceeds the value in the rest of the IGM by a factor of ,2,3. We further find that in the post-overlap phase of reionization the size of the observed quasar near-zones is not directly sensitive to the neutral hydrogen fraction of the IGM. Instead, these sizes probe the level of the background ionization rate and the temperature of the surrounding IGM. The observed rapid evolution of the quasar near-zone sizes at 5.8 < z < 6.4 can thus be explained by the rapid evolution of the ionizing background, which in our model is caused by the completion of overlap at the end of reionization by 6 ,z, 7. [source]

Hot and cold gas accretion and feedback in radio-loud active galaxies

M. J. Hardcastle
ABSTRACT We have recently shown that X-ray observations of the population of ,low-excitation' radio galaxies, which includes most low-power, Fanaroff,Riley class I sources as well as some more powerful Fanaroff,Riley class II objects, are consistent with a model in which the active nuclei of these objects are not radiatively efficient at any waveband. In another recent paper, Allen et al. have shown that Bondi accretion of the hot, X-ray emitting phase of the intergalactic medium (IGM) is sufficient to power the jets of several nearby, low-power radio galaxies at the centres of clusters. In this paper, we combine these ideas and suggest that accretion of the hot phase of the IGM is sufficient to power all low-excitation radio sources, while high-excitation sources are powered by accretion of cold gas that is in general unrelated to the hot IGM. This model explains a number of properties of the radio-loud active galaxy population, and has important implications for the energy input of radio-loud active galactic nuclei into the hot phase of the IGM: the energy supply of powerful high-excitation sources does not have a direct connection to the hot phase. [source]

Cosmological simulations of intergalactic medium enrichment from galactic outflows

Benjamin D. Oppenheimer
ABSTRACT We investigate models of self-consistent chemical enrichment of the intergalactic medium (IGM) from z= 6.0 , 1.5, based on hydrodynamic simulations of structure formation that explicitly incorporate outflows from star-forming galaxies. Our main result is that outflow parametrizations derived from observations of local starburst galaxies, in particular momentum-driven wind scenarios, provide the best agreement with observations of C iv absorption at z, 2,5. Such models sufficiently enrich the high- z IGM to produce a global mass density of C iv absorbers that is relatively invariant from z= 5.5 , 1.5, in agreement with observations. This occurs despite continual IGM enrichment causing an increase in volume-averaged metallicity by ,× 5,10 over this redshift range, because energy input accompanying the enriching outflows causes a drop in the global ionization fraction of C iv. Comparisons to observed C iv column density and linewidth distributions and C iv -based pixel optical depth ratios provide significant constraints on wind models. Our best-fitting outflow models show mean IGM temperatures only slightly above our no-outflow case, metal filling factors of just a few per cent with volume-weighted metallicities around 10,3 at z, 3, significant amounts of collisionally ionized C iv absorption and a metallicity,density relationship that rises rapidly at low overdensities and flattens at higher ones. In general, we find that outflow speeds must be high enough to enrich the low-density IGM at early times but low enough not to overheat it, and concurrently must significantly suppress early star formation while still producing enough early metals. It is therefore non-trivial that locally calibrated momentum-driven wind scenarios naturally yield the desired strength and evolution of outflows, and suggest that such models represent a significant step towards understanding the impact of galactic outflows on galaxies and the IGM across cosmic time. [source]

Cosmic evolution of metal densities: the enrichment of the intergalactic medium

F. Calura
ABSTRACT By means of chemo-photometric models for galaxies of different morphological types, we have carried out a detailed study of the history of element production by spheroidal and dwarf irregular galaxies. Spheroidal galaxies suffer a strong and intense star formation episode at early times. In dwarf irregulars, the star formation rate (SFR) proceeds at a low regime but continuously. Both galactic types enrich the intergalactic medium (IGM) with metals by means of galactic winds. We have assumed that the galaxy number density is fixed and normalized to the value of the optical luminosity function observed in the local Universe. Our models allow us to investigate in detail how the metal fractions locked up in stars in spheroids and dwarf irregulars, those present in the interstellar medium (ISM) and those ejected into the IGM have changed with cosmic time. By relaxing the instantaneous recycling approximation and taking into account stellar lifetimes, for the first time we have studied the evolution of the chemical abundance ratios in the IGM and compared our predictions with a set of observations by various authors. Our results indicate that the bulk of the IGM enrichment is due to spheroids, with dwarf irregular galaxies playing a negligible role. Our predictions grossly account for the [O/H] observed in the IGM at high redshift, but overestimate the [C/H]. Furthermore, it appears hard to reproduce the abundance ratios observed in the high-redshift IGM. Some possible explanations are discussed in the text. This is the first attempt to study the abundance ratios in the IGM by means of detailed chemical evolution models which take into account the stellar lifetimes. Numerical simulations adopting our chemical evolution prescriptions could be useful to improve our understanding of the IGM chemical enrichment. [source]

The possible detection of high-redshift Type II QSOs in deep fields

Avery Meiksin
ABSTRACT The colours of high-redshift Type II quasi-stellar objects (QSOs) are synthesized from observations of moderate-redshift systems. It is shown that Type II QSOs are comparable to starbursts at matching the colours of z850 -dropouts and i775 -drops in the Hubble UltraDeep Field, and more naturally account for the bluest objects detected. Type II QSOs may also account for some of the i775 -drops detected in the Great Observatories Origins Deep Survey (GOODS) fields. It is shown that by combining imaging data from the Hubble Space Telescope and the James Webb Space Telescope, it will be possible to clearly separate Type II QSOs from Type I QSOs and starbursts based on their colours. Similarly, it is shown that the United Kingdom Infrared Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS) ZYJ filters may be used to discriminate high-redshift Type II QSOs from other objects. If Type II QSOs are prevalent at high redshifts, then active galactic nuclei (AGNs) may be major contributors to the re-ionization of the intergalactic medium. [source]

The sources of intergalactic metals

E. Scannapieco
ABSTRACT We study the clustering properties of metals in the intergalactic medium (IGM) as traced by 619 C iv and 81 Si iv absorption components with N, 1012 cm,2 and 316 Mg ii and 82 Fe ii absorption components with N, 1011.5 cm,2 in 19 high signal-to-noise ratio (60,100 pixel,1), high-resolution (R= 45 000) quasar spectra. C iv and Si iv trace each other closely and their line-of-sight correlation functions ,(v) exhibit a steep decline at large separations and a flatter profile below ,150 km s,1, with a large overall bias. These features do not depend on absorber column densities, although there are hints that the overall amplitude of ,C iv (v) increases with time over the redshift range detected (1.5,3). Carrying out a detailed smoothed particle hydrodynamic simulation (2 × 3203, 57 Mpc3 comoving), we show that the C iv correlation function cannot be reproduced by models in which the IGM metallicity is constant or a local function of overdensity (Z,,2/3). However, the properties of ,C iv(v) are generally consistent with a model in which metals are confined within bubbles with a typical radius Rs about sources of mass ,Ms. We derive best-fitting values of Rs, 2 comoving Mpc and Ms, 1012 M, at z= 3. Our lower-redshift (0.5,2) measurements of the Mg ii and Fe ii correlation functions also uncover a steep decline at large separations and a flatter profile at small separations, but the clustering is even higher than in the z= 1.5,3 measurements, and the turnover is shifted to somewhat smaller distances, ,75 km s,1. Again, these features do not change with column density, but there are hints that the amplitudes of ,Mg ii(v) and ,Fe ii(v) increase with time. We describe an analytic ,bubble' model for these species, which come from regions that are too compact to be accurately simulated numerically, deriving best-fitting values of Rs, 2.4 Mpc and Ms, 1012 M,. Equally good analytic fits to all four species are found in a similarly biased high-redshift enrichment model in which metals are placed within 2.4 comoving Mpc of Ms, 3 × 109 sources at z= 7.5. [source]

A very extended reionization epoch?

A. Melchiorri
ABSTRACT The recent observations of cross temperature,polarization power spectra of the cosmic microwave background (CMB) made by the Wilkinson Microwave Anisotropy Probe (WMAP) satellite are in better agreement with a high value of the Thomson scattering optical depth ,, 0.17. This value is close to ,= 0.3, which is taken as the upper limit in the parameter extraction analysis made by the WMAP team. However, models with ,, 0.3 provide a good fit to current CMB data and are not significantly excluded when combined with large-scale structure data. By making use of a self-consistent reionization model, we verify the astrophysical feasibility of models with ,, 0.3. It turns out that current data on various observations related to the thermal and ionization history of the intergalactic medium are not able to rule out ,, 0.3. The possibility of a very extended reionization epoch can significantly undermine the WMAP constraints on crucial cosmological parameters such as the Hubble constant, the spectral index of primordial fluctuations and the amplitude of dark matter clustering. [source]

Primordial magnetic fields in the post-recombination era and early reionization

Shiv K. Sethi
ABSTRACT We explore the ways in which primordial magnetic fields influence the thermal and ionization history of the post-recombination Universe. After recombination, the Universe becomes mostly neutral, resulting also in a sharp drop in the radiative viscosity. Primordial magnetic fields can then dissipate their energy into the intergalactic medium via ambipolar diffusion and, for small enough scales, by generating decaying magnetohydrodynamics turbulence. These processes can significantly modify the thermal and ionization history of the post-recombination Universe. We show that the dissipation effects of magnetic fields, which redshifts to a present value B0= 3 × 10,9 G smoothed on the magnetic Jeans scale and below, can give rise to Thomson scattering optical depths ,, 0.1, although not in the range of redshifts needed to explain the recent Wilkinson Microwave Anisotropy Probe (WMAP) polarization observations. We also study the possibility that primordial fields could induce the formation of subgalactic structures for z, 15. We show that early structure formation induced by nanoGauss magnetic fields is potentially capable of producing the early reionization implied by the WMAP data. Future cosmic microwave background observations will be very useful to probe the modified ionization histories produced by primordial magnetic field evolution and constrain their strength. [source]

The temperature of the intergalactic medium and the Compton y parameter

Pengjie Zhang
ABSTRACT The thermal Sunyaev,Zeldovich (SZ) effect directly probes the thermal energy of the Universe. Its precision modelling and future high-accuracy measurements will provide a powerful way to constrain the thermal history of the Universe. In this paper, we focus on the precision modelling of the gas density weighted temperature and the mean SZ Compton y parameter. We run high-resolution adiabatic hydrodynamic simulations adopting the WMAP cosmology to study the temperature and density distribution of the intergalactic medium (IGM). To quantify possible simulation limitations, we run n=,1, , 2 self-similar simulations. Our analytical model on is based on energy conservation and matter clustering and has no free parameter. Combining both simulations and analytical models thus provides the precision modelling of and . We find that the simulated temperature probability distribution function and shows good convergence. For the WMAP cosmology, our highest-resolution simulation (10243 cells, 100 Mpc h,1 box size) reliably simulates with better than 10 per cent accuracy for z, 0.5. Toward z= 0, the simulation mass-resolution effect becomes stronger and causes the simulated to be slightly underestimated (at z= 0, ,20 per cent underestimated). Since is mainly contributed by the IGM at z, 0.5, this simulation effect on is no larger than ,10 per cent. Furthermore, our analytical model is capable of correcting this artefact. It passes all tests of self-similar simulations and WMAP simulations and is able to predict and to several per cent accuracy. For a low matter density ,CDM cosmology, the present is 0.32 (,8/0.84)(,m/0.268) keV, which accounts for 10,8 of the critical cosmological density and 0.024 per cent of the cosmic microwave background (CMB) energy. The mean y parameter is 2.6 × 10,6 (,8/0.84)(,m/0.268). The current upper limit of y < 1.5 × 10,5 measured by FIRAS has already ruled out combinations of high ,8, 1.1 and high ,m, 0.5. [source]

Galaxies as fluctuations in the ionizing background radiation at low redshift

Suzanne M. Linder
ABSTRACT Some Lyman continuum photons are likely to escape from most galaxies, and these can play an important role in ionizing gas around and between galaxies, including gas that gives rise to Lyman-alpha absorption. Thus the gas surrounding galaxies and in the intergalactic medium will be exposed to varying amounts of ionizing radiation depending upon the distances, orientations and luminosities of any nearby galaxies. The ionizing background can be recalculated at any point within a simulation by adding the flux from the galaxies to a uniform quasar contribution. Normal galaxies are found to almost always make some contribution to the ionizing background radiation at a redshift of zero, as seen by absorbers and at random points in space. Assuming that ,2 per cent of ionizing photons escape from a galaxy such as the Milky Way, we find that normal galaxies make a contribution of at least 30,40 per cent of the assumed quasar background. Lyman-alpha absorbers with a wide range of neutral column densities are found to be exposed to a wide range of ionization rates, although the distribution of photoionization rates for absorbers is found to be strongly peaked. On average, fewer highly ionized absorbers are found to arise further from luminous galaxies, while local fluctuations in the ionization rate are seen around galaxies having a wide range of properties. [source]

Constraints on the ultraviolet metagalactic emissivity using the Ly, forest

Avery Meiksin
ABSTRACT Numerical hydrodynamical simulations have proven a successful means of reproducing many of the statistical properties of the Ly, forest as measured in high redshift quasar spectra. The source of ionization of the intergalactic medium (IGM), however, remains unknown. We investigate how the Ly, forest may be used to probe the nature of the sources. We show that the attenuation of Lyman continuum photons by the IGM depends sensitively on the emissivity of the sources, permitting a strong constraint to be set on the required emissivity to match the measured values of the mean IGM Ly, optical depth. We find that, within the observational errors, quasi-stellar object (QSO) sources alone are able to account for the required ultraviolet (UV) background at z, 4. By contrast, the emissivity of Lyman-break galaxies (LBGs) must decline sharply with redshift, compared with the estimated emissivity at z, 3, so as not to overproduce the UV background and drive the mean Ly, optical depth to values that are too low. We also investigate the effect of fluctuations in the UV background, as would arise if QSOs dominated. To this end, we derive the distribution function of the background radiation field produced by discrete sources in an infinite universe, including the effects of attenuation by an intervening absorbing medium. We show that, for z, 5, the fluctuations significantly boost the mean Ly, optical depth, and so increase the estimate for the mean ionization rate required to match the measured mean Ly, optical depths. The fluctuations will also result in large spatial correlations in the ionization level of the IGM. We show that the large mean Ly, optical depth measured at z, 6 suggests such large correlations will be present if QSOs dominate the UV background. A secondary, smaller effect of the UV background fluctuations is a distortion of the pixel flux distribution. While the effect on the distribution may be too small to detect with existing telescopes, it may be measurable with the extremely large telescopes planned for the future. We also show that if QSOs dominate the UV background at z, 6, then they will be sufficient in number to rejuvenate the ionization of a previously ionized IGM if it has not yet fully recombined. [source]

Entropy injection as a global feedback mechanism

S. Peng Oh
ABSTRACT Both pre-heating of the intergalactic medium and radiative cooling of low entropy gas have been proposed to explain the deviation from self-similarity in the cluster LX,TX relation and the observed entropy floor in these systems. However, severe overcooling of gas in groups is necessary for radiative cooling alone to explain the observations. Non-gravitational entropy injection must therefore still be important in these systems. We point out that, on scales of groups and below, gas heated to the required entropy floor cannot cool in a Hubble time, regardless of its subsequent adiabatic compression. Pre-heating therefore shuts off the gas supply to galaxies, and should be an important global feedback mechanism for galaxy formation. Constraints on global gas cooling can be placed from the joint evolution of the comoving star formation rate and neutral gas density. Pre-heating at high redshift can be ruled out; however, the data do not rule out passive gas consumption without inflow as z, 2. Because for pre-heated gas tcool > tdyn, we speculate that pre-heating could play a role in determining the Hubble sequence; at a given mass scale, high , peaks in the density field collapse early to form ellipticals, while low , peaks collapse late and quiescently accrete pre-heated gas to form spirals. The entropy produced by large-scale shock-heating of the intergalatic medium is significant only at late times, z < 1, and cannot produce these effects. [source]

Sunyaev,Zel'dovich effect from quasar-driven blast waves

P. Platania
Abstract Quasar-driven winds are currently the best candidates for accounting for the pre-heating of the intergalactic medium in clusters. Such winds, occurring during early phases of the evolution of spheroidal galaxies, shock-heat the interstellar gas, thus inducing a detectable Sunyaev,Zel'dovich effect. We estimate the amplitude and the angular scale of such an effect as well as its counts as a function of the Comptonization parameter y. The contamination arising from radio emission by the quasar itself is also discussed. The corresponding mean Compton distortion of the cosmic microwave background spectrum is found to be well below the COBE/FIRAS upper limit. [source]

Dynamical limits on galactic winds, halo MACHOs and intergalactic globular clusters

HongSheng Zhao
Abstract We argue that any violent galactic winds following the early epoch of starbursts will significantly weaken the potentials of galaxies, and leave lasting signatures such as a lowered dark halo density and preferentially radial/escaping orbits for halo tracers such as globular clusters. A galaxy is disintegrated if more than half of its dynamical mass is blown off. The presence of dense haloes in galaxies and the absence of intergalactic/escaping globulars should imply an upper limit on the amount of baryons lost in galactic winds of around 4 per cent of the total mass of the galaxy. This translates to limits on the baryons participating in the early starbursts and baryons locked in stellar remnants, such as white dwarfs. The numbers of halo white dwarfs claimed in recent proper motion searches and microlensing observations in the Galactic halo are too high to be consistent with our dynamical upper limits. Similar arguments also imply upper limits for the number of neutron stars and stellar black holes in galaxy haloes. Nevertheless, a milder outflow is desirable, especially in dwarf galaxies, both to lower their cold dark matter central density and to inject metals into the intergalactic medium. [source]

The energy cascade from warm dark matter decays

M. Valdés
ABSTRACT We use a set of Monte Carlo simulations to follow the cascade produced by a primary electron of energy Ein in the intergalactic medium. We choose Ein= 3,10 keV as expected from the decay of one of the most popular warm dark matter (WDM) candidates, sterile neutrinos. Our simulation takes into account processes previously neglected such as free,free interactions with ions and recombinations, and uses the best available cross-sections for collisional ionizations and excitations with H and He and for electron,electron collisions. We precisely derive the fraction of the primary electron energy that heats the gas, ionizes atoms and produces line and continuum photons as a function of the ionization fraction. Handy fitting formulae for all the above energy depositions are provided. By keeping track of the individual photons, we can distinguish between photons in the Ly, resonance and those with energy E < 10.2 eV that do not interact further with gas. This separation is important because a Ly, background can heat or cool the gas depending on the nature of the photons, and can have effects on the 21-cm radiation emitted by neutral H, which will probably become detectable at z > 6 in the near future by the next generation radio interferometers. [source]

LOFAR as a probe of the sources of cosmological reionization

Saleem Zaroubi
ABSTRACT We propose use of the thickness of the ionization front as a discriminant between alternative modes of reionization in the early Universe, by stars or by miniquasars. Assuming a photoionization,recombination balance, we find that for miniquasar sources the transition from neutral to ionized intergalactic medium is extended and has two features. The first is a sudden steep increase in the neutral fraction with a typical width of 5,10 comoving megaparsecs, depending on the miniquasar power. The second feature is a long wing that represents a much slower transition from a neutral fraction of , 0.8 to 1. The angular resolution of LOFAR is expected to resolve these scales and will, therefore, play an important role in discriminating the hard sources of ionizing photons from the stellar ones. [source]

The effect of ram-pressure stripping and starvation on the star formation properties of cluster galaxies

A. Boselli
Abstract We have combined UV to radio centimetric observations of resolved galaxies in the Virgo cluster with multizone, chemospectrophotometric models of galaxy evolution especially tailored to take into account the effects of the cluster environment (ram pressure stripping and starvation). This exercise has shown that anemic spirals with truncated radial profiles of the gas component and of the young stellar populations, typical in rich clusters of galaxies, have been perturbed by a recent (,100 Myr) ram pressure stripping event induced by their interaction with the cluster intergalactic medium. Starvation is not able to reproduce the observed truncated radial profiles. Both ram pressure and starvation induce a decrease of the stellar surface brightness of the perturbed disc, and thus can hardly be invoked to explain the formation of lenticular galaxies inhabiting rich clusters, which are characterised by higher surface brightnesses than early type spirals of similar luminosity. In dwarfs the ram pressure stripping event is so efficient to totally remove their gas thus stopping on short time scales (<2 Gyr) their star formation activity. Low luminosity star forming discs can be transformed in dE galaxies (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]

The evolution of the gas content of galaxy groups

E.M. Wilcots
Abstract We examine multiple facets of the evolution of the gas content of galaxy groups. Complementing building evidence that a tremendous amount of galaxy transformation takes place in the group environment we find evidence of similar transformation of the gas content. In dynamically young groups galaxy-galaxy interactions appear to be responsible for depositing large quantities of neutral gas into the intergalactic medium. The gas content of dynamically evolved groups, however, is characterized by extended halos of diffuse hot gas. We also find that groups may harbor significant quantities of heretofore undetected baryons and that feedback from AGN may be responsible for heating the intragroup medium (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]

Origin of cosmic magnetic fields

M. J. Rees
Abstract The first significant cosmic fields, and the seed field for galactic dynamos probably developed after the formation of the first non-linear structures. The history of star formation and the intergalactic medium is controlled, at least in part, by how and when galaxies and their precursors acquired their fields. The amplification of fields behind shocks, and the diffusivity of the magnetic flux, are crucial to the interpretation of radio sources, gamma ray burst afterglows, and other energetic cosmic phenomena. The build-up of magnetic fields is an important aspect of the overall cosmogonic process. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]