Home About us Contact | |||
Interferon Production (interferon + production)
Selected AbstractsInterferon regulatory factor-3 activation, hepatic interferon-stimulated gene expression, and immune cell infiltration in hepatitis C virus patients,HEPATOLOGY, Issue 3 2008Daryl T.-Y. Interferon regulatory factor-3 (IRF-3) activation directs ,/, interferon production and interferon-stimulated gene (ISG) expression, which limits virus infection. Here, we examined the distribution of hepatitis C virus (HCV) nonstructural 3 protein, the status of IRF-3 activation, and expression of IRF-3 target genes and ISGs during asynchronous HCV infection in vitro and in liver biopsies from patients with chronic HCV infection, using confocal microscopy and functional genomics approaches. In general, asynchronous infection with HCV stimulated a low-frequency and transient IRF-3 activation within responsive cells in vitro that was associated with cell-to-cell virus spread. Similarly, a subset of HCV patients exhibited the nuclear, active form of IRF-3 in hepatocytes and an associated increase in IRF-3 target gene expression in hepatic tissue. Moreover, ISG expression profiles formed disease-specific clusters for HCV and control nonalcoholic fatty liver disease patients, with increased ISG expression among the HCV patients. We identified the presence of T cell and plasmacytoid dendritic cell infiltrates within all biopsy specimens, suggesting they could be a source of hepatic interferon in the setting of hepatitis C and chronic inflammatory condition. Conclusion: These results indicate that HCV can transiently trigger IRF-3 activation during virus spread and that in chronic HCV, IRF-3 activation within infected hepatocytes occurs but is limited. (HEPATOLOGY 2007.) [source] Respiratory virus induction of alpha-, beta- and lambda-interferons in bronchial epithelial cells and peripheral blood mononuclear cellsALLERGY, Issue 3 2009M. R. Khaitov Background:, Respiratory viruses, predominantly rhinoviruses are the major cause of asthma exacerbations. Impaired production of interferon-, in rhinovirus infected bronchial epithelial cells (BECs) and of the newly discovered interferon-,s in both BECs and bronchoalveolar lavage cells, is implicated in asthma exacerbation pathogenesis. Thus replacement of deficient interferon is a candidate new therapy for asthma exacerbations. Rhinoviruses and other respiratory viruses infect both BECs and macrophages, but their relative capacities for ,-, ,- and ,-interferon production are unknown. Methods:, To provide guidance regarding which interferon type is the best candidate for development for treatment/prevention of asthma exacerbations we investigated respiratory virus induction of ,-, ,- and ,-interferons in BECs and peripheral blood mononuclear cells (PBMCs) by reverse transferase-polymerase chain reaction and enzyme-linked immunosorbent assay. Results:, Rhinovirus infection of BEAS-2B BECs induced interferon-, mRNA expression transiently at 8 h and interferon-, later at 24 h while induction of interferon-, was strongly induced at both time points. At 24 h, interferon-, protein was not detected, interferon-, was weakly induced while interferon-, was strongly induced. Similar patterns of mRNA induction were observed in primary BECs, in response to both rhinovirus and influenza A virus infection, though protein levels were below assay detection limits. In PBMCs interferon-,, interferon-, and interferon-, mRNAs were all strongly induced by rhinovirus at both 8 and 24 h and proteins were induced: interferon-,>-,>-,. Thus respiratory viruses induced expression of ,-, ,- and ,-interferons in BECs and PBMCs. In PBMCs interferon-,>-,>-, while in BECs, interferon-,>-,>-,. Conclusions:, We conclude that interferon-,s are likely the principal interferons produced during innate responses to respiratory viruses in BECs and interferon-,s in PBMCs, while interferon-, is produced by both cell types. [source] The Multifunctional Role of mTOR in Innate Immunity: Implications for Transplant ImmunityAMERICAN JOURNAL OF TRANSPLANTATION, Issue 12 2009M. D. Säemann The mammalian target of rapamycin (mTOR) is an evolutionary conserved serine,threonine kinase that senses various environmental stimuli in most cells primarily to control cell growth. Restriction of cellular proliferation by mTOR inhibition led to the use of mTOR inhibitors as immunosuppressants in allogeneic transplantation as well as novel anticancer agents. However, distinct inflammatory side effects such as fever, pneumonitis, glomerulonephritis or anemia of chronic disease have been observed under this treatment regime. Apart from the mere cell-cycle regulatory effect of mTOR in dividing cells, recent data revealed a master regulatory role of mTOR in the innate immune system. Hence, inhibition of mTOR promotes proinflammatory cytokines such as IL-12 and IL-1,, inhibits the anti-inflammatory cytokine IL-10 and boosts MHC antigen presentation via autophagy in monocytes/macrophages and dendritic cells. Moreover, mTOR regulates type I interferon production and the expression of chemokine receptors and costimulatory molecules. These results place mTOR in a complex immunoregulatory context by controlling innate and adaptive immune responses. In this review, we discuss the clinical consequences of mTOR-inhibitor therapy and aim to integrate this recent data into our current view of the molecular mechanisms of clinically employed mTOR inhibitors and discuss their relevance with special emphasis to transplantation. [source] Statins, inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, function as inhibitors of cellular and molecular components involved in type I interferon productionARTHRITIS & RHEUMATISM, Issue 7 2010Hideki Amuro Objective Statins, which are used as cholesterol-lowering agents, have pleiotropic immunomodulatory properties. Although beneficial effects of statins have been reported in autoimmune diseases, the mechanisms of these immunomodulatory effects are still poorly understood. Type I interferons (IFNs) and plasmacytoid dendritic cells (PDCs) represent key molecular and cellular pathogenic components in autoimmune diseases such as systemic lupus erythematosus (SLE). Therefore, PDCs may be a specific target of statins in therapeutic strategies against SLE. This study was undertaken to investigate the immunomodulatory mechanisms of statins that target the IFN response in PDCs. Methods We isolated human blood PDCs by flow cytometry and examined the effects of simvastatin and pitavastatin on PDC activation, IFN, production, and intracellular signaling. Results Statins inhibited IFN, production profoundly and tumor necrosis factor , production modestly in human PDCs in response to Toll-like receptor ligands. The inhibitory effect on IFN, production was reversed by geranylgeranyl pyrophosphate and was mimicked by either geranylgeranyl transferase inhibitor or Rho kinase inhibitor, suggesting that statins exert their inhibitory actions through geranylgeranylated Rho inactivation. Statins inhibited the expression of phosphorylated p38 MAPK and Akt, and the inhibitory effect on the IFN response was through the prevention of nuclear translocation of IFN regulatory factor 7. In addition, statins had an inhibitory effect on both IFN, production by PDCs from SLE patients and SLE serum,induced IFN, production. Conclusion Our findings suggest a specific role of statins in controlling type I IFN production and a therapeutic potential in IFN-related autoimmune diseases such as SLE. [source] |