Interface Shape (interface + shape)

Distribution by Scientific Domains


Selected Abstracts


Numerical investigation of heat transport and fluid flow during the seeding process of oxide Czochralski crystal growth Part 1: non-rotating seed

CRYSTAL RESEARCH AND TECHNOLOGY, Issue 6 2007
M. H. Tavakoli
Abstract For the seeding process of oxide Czochralski crystal growth, the flow and temperature field of the system as well as the seed-melt interface shape have been studied numerically using the finite element method. The configuration usually used initially in a real Czochralski crystal growth process consists of a crucible, active afterheater, induction coil with two parts, insulation, melt, gas and non-rotating seed crystal. At first the volumetric distribution of heat inside the metal crucible and afterheater inducted by the RF coil was calculated. Using this heat source the fluid flow and temperature field were determined in the whole system. We have considered two cases with respect to the seed position: (1) before and (2) after seed touch with the melt. It was observed that in the case of no seed rotation (,seed = 0), the flow pattern in the bulk melt consists of a single circulation of a slow moving fluid. In the gas domain, there are different types of flow motion related to different positions of the seed crystal. In the case of touched seed, the seed-melt interface has a deep conic shape towards the melt. It was shown that an active afterheater and its location with respect to the crucible, influences markedly the temperature and flow field of the gas phase in the system and partly in the melt. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Influence of internal radiation on the heat transfer during growth of YAG single crystals by the Czochralski method

CRYSTAL RESEARCH AND TECHNOLOGY, Issue 10 2003
Z. Galazka
Abstract Heat and mass transfer taking place during growth of Y3Al5O12 (YAG) crystals by the Czochralski method, including inner radiation, is analyzed numerically using a Finite Element Method. For inner radiative heat transfer through the crystal the band approximation model and real transmission characteristics, measured from obtained crystals, are used. The results reveal significant differences in temperature and melt flow for YAG crystals doped with different dopands influencing the optical properties of the crystals. When radiative heat transport through the crystal is taken into account the melt-crystal interface shape is different from that when the radiative transport is not included. Its deflection remains constant over a wide range of crystal rotation rates until it finally rapidly changes in a narrow range of rotation rates. (© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Coupling of mesh-free methods with finite elements: basic concepts and test results

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 10 2006
T. Rabczuk
Abstract This paper reviews several novel and older methods for coupling mesh-free particle methods, particularly the element-free Galerkin (EFG) method and the smooth particle hydrodynamics (SPH), with finite elements (FEs). We study master,slave couplings where particles are fixed across the FE boundary, coupling via interface shape functions such that consistency conditions are satisfied, bridging domain coupling, compatibility coupling with Lagrange multipliers and hybrid coupling methods where forces from the particles are applied via their shape functions on the FE nodes and vice versa. The hybrid coupling methods are well suited for large deformations and adaptivity and the coupling procedure is independent of the particle distance and nodal arrangement. We will study the methods for several static and dynamic applications, compare the results to analytical and experimental data and show advantages and drawbacks of the methods. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Two-dimensional modeling for stability analysis of two-phase stratified flow

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 7 2010
Ghassem Heidarinejad
Abstract The effect of wavelength and relative velocity on the disturbed interface of two-phase stratified regime is modeled and discussed. To analyze the stability, a small perturbation is imposed on the interface. Growth or decline of the disturbed wave, relative velocity, and surface tension with respect to time will be discussed numerically. Newly developed scheme applied to a two-dimensional flow field and the governing Navier,Stokes equations in laminar regime are solved. Finite volume method together with non-staggered curvilinear grid is a very effective approach to capture interface shape with time. Because of the interface shape, for any time advancement, a new grid is performed separately on each stratified field, liquid, and gas regime. The results are compared with the analytical characteristics method and one-dimensional modeling. This comparison shows that solving the momentum equation including viscosity term leads to physically more realistic results. In addition, the newly developed method is capable of predicting two-phase stratified flow behavior more precisely than one-dimensional modeling. It was perceived that the surface tension has an inevitable role in dissipation of interface instability and convergence of the two-phase flow model. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Experiment and simulation on interface shapes of an yttrium aluminium garnet miniature molten zone formed using the laser-heated pedestal growth method for single-crystal fibers

JOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 4 2009
P. Y. Chen
A two-dimensional simulation was employed to study the melt/air and melt/solid interface shapes of the miniature molten zone formed in a laser-heated pedestal growth (LHPG) system. Using a non-orthogonal body-fitting grid system with the control-volume finite-difference method, the interface shape can be determined both efficiently and accurately. During stable growth, the dependence of the molten-zone length and shape on the heating CO2 laser is examined in detail under both the maximum and the minimum allowed powers with various growth speeds. The effect of gravity on the miniature molten zone is also simulated and the possibility of horizontally oriented LHPG is revealed. Such a horizontal system is good for the growth of long crystal fibers. [source]